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Abstract

This paper presents a geometric-variational approach to continuous and discrete second-order
field theories following the methodology of [Marsden, Patrick, Shkoller, Comm. Math. Phys. 199
(1998) 351-395]. Staying entirely in the Lagrangian framework and lettidgnote the configu-
ration fiber bundle, we show that both the multisymplectic structurghas well as the Noether
theorem arise from the first variation of the action function. We generalize the multisymplectic form
formula derived for first-order field theories in [Marsden, Patrick, Shkoller, Comm. Math. Phys.
199 (1998) 351-395], to the case of second-order field theories, and we apply our theory to the
Camassa—Holm (CH) equation in both the continuous and discrete settings. Our discretization pro-
duces a multisymplectic-momentum integrator, a generalization of the Moser—Veselov rigid body
algorithm to the setting of nonlinear PDEs with second-order Lagrangians. © 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

This paper continues the development of the variational approach to multisymplectic
field theory introduced in [12]. In that paper, only first-order field theories were considered.
Herein, we shall focus on second-order field theories, i.e., those field theories governed
by Lagrangians that depend on the space—time location, the field, and its first and second
partial derivatives.
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Multisymplectic geometry and its applications to covariant field theory and nonlinear
partial differential equations (PDESs) has a rich and interesting history that we shall not
discuss in this paper; rather, we refer the reader to [5-12] and the references therein. The
covariant multisymplectic approach is the field-theoretic generalization of the symplectic
approach to classical mechanics. The configuration maniblof classical Lagrangian
mechanics is replaced by a fiber bundélle> X over the(n + 1)-dimensional space—time
manifold X, whose sections are the physical fields of interest; the Lagrangian phase space
is TQin Lagrangian mechanics, whereasKtr-order field theories, the role of phase space
is played by thekth jet bundle ofy, J*Y, thus reflecting the additional dependence of the
fields on spatial variables.

For a given smooth Lagrangidn: TQ — R, there is a distinguished symplectic 2-form
wr, on TQ, whose Hamiltonian vector field is the solution of the Euler-Lagrange equa-
tions of Lagrangian mechanics. Lagrangian field theories, on the other hand, governed by
covariant Lagrangiang : J¥Y — A"*1(X), can be completely described by the multi-
symplectic(n +2)-form @, on 7%~y the field-theoretic analog of the symplectic 2-form
wy, of classical mechanics. In the case tifais one-dimensionak2 reduces to the usual
time-dependent 2-form of classical nonautonomous mechanics (see [13]).

Traditionally, the symplectic 2-formv; as well as the multisymplecti@: + 2)-form
Q are constructed on the Lagrangian side, using the pull-back by the Legendre trans-
form of canonical differential forms on the dual or Hamiltonian side. Recently, however,
Marsden et al. [12] have shown that for first-order field theories whefein/ly —
A"tL(X), Q, = dO, arises as the boundary term in the first variation of the action
fXE o jl¢ for smooth mapping® : X — Y. This method is advantageous to the tradi-
tional approach in that
1. a complete geometric theory can be derived while staying entirely on the Lagrangian

side, and
2. multisymplectic structure can be obtained in non-standard settings such as discrete field

theory.

The purpose of this paper is to generalize the results of Marsden et al. [12] to the case that
L :J2Y — A"1(X).In Section 2, we prove in Theorem 2.1, that a unique multisymplectic
(n+2)-form arises as the boundary term of the first variation of the action function. We then
prove in Theorem 2.2 the multisymplectic form formula for second-order field theories, a
covariant generalization of the fact that in conservative mechanics, the flow preserves the
symplectic structure. We then obtain the covariant Noether theorem for second-order field
theories, by taking the first variation of the action function, restricted to the space of solutions
of the covariant Euler—Lagrange equations.

In Section 3, we use our abstract geometric theory on the Camassa—Holm (CH) equation,
a model of shallow water waves that simultaneously exhibits solitary wave interaction and
wave-breaking. We show that the multisymplectic form formula produces a new conser-
vation law ideally suited to study wave instability, and connect our intrinsic theory with
Bridges’ theory of multisymplectic structures (see [1,12]).

Section 4 is devoted to the discretization of second-order field theories. We are able to
use our general theory to produce numerical algorithms for nonlinear PDEs governed by
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second-order Lagrangians; these naturally respect a discrete multisymplectic form formula
and a discrete Noether theorem. Again, we demonstrate this methodology on the CH equa-
tion. Of course, we would have been pleased to see that the multisymplectic numerical

schemes proposed here, in practice, capture dynamics of the signature “peakon” solutions
of the CH equation. However, the practical applications of these new numerical schemes

are beyond the scope of the present work.

2. Variational principles for second-order classical field theory
2.1. Multisymplectic geometry

In this section, we review some aspects of the following multisymplectic geometry
[9,11-13].

Let X be an orientablen(+ 1)-dimensional manifold (which in applications is usually
space-time) and letxy : Y — X be a fiber bundle oveX. Sectionsp : X — Y of this
covariant configuration bundieill be the physical fields. The space of sectionggf will
be denoted by *°(rxy) or by C*°(Y). The vertical bundl&/Y is the subbundle kefwyy
of TY, whereT wxy denotes the tangent map of they.

If X has local coordinatest, u = 1,2, ... ,n, 0, adapted coordinates Grarey4, A =
1,..., N, along the fibery, := n)z\}(x), wherex € X andN is the fiber dimension of .

J*Y denotes thekth jet bundle ofY, and this bundle may be defined inductively by
JI(--- (J1Y)). Recall that the first jet bundlélY is the affine bundle over whose fiber
overy e Y, consists of those linear mappings 7, X — T,Y satisfying

Trxyoy = ldentityon 7, X.

Coordinategx*, y4) onmxyinduce coordinateﬁ’j onthefibersoff Y. Giveng € C®(Y),
its tangent map at € X, denoted byl ¢ is an element ofllY¢(x). Therefore, the map
x — Ty¢ defines a section of'Y regarded as a bundle ovEr This section is denoted by
j1(¢) and is called the first jet af, or the first prolongation ap. In coordinates;(¢) is
given by

X (x*, pA (), 0,07 (1)),

whered, = 9/9x". A section of the bundlgly — X which is the first prolongation of
the section o — X is said to be holonomic.

The first jet bundle/1Y is the appropriate configuration bundle for first-order field the-
ories, i.e., field theories governed by Lagrangians which only depend on the space—time
position, the field, and the first partial derivatives of the field. Herein, we shall focus on
second-order field theories that are governed by Lagrangians which additionally depend
on the second partial derivatives of the fields; thus, in second-order field theories, the La-
grangian is defined ofi?Y = J1(J1Y). Let us be more specific.

Definition 2.1. The second jet bundle is the affine bundle axky whose fiberay € J1v,
consists of linear mappings: 7, X — T,,JlY satisfying
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Tmy jiy os = ldentityon 7, X.

One can define the second jet prolongation of a segtioX — Y, j2(¢), asj1(j1(¢)),
thatis a map: — T, j1(¢), wherejl(¢) is regarded as a section $tY over X. This map
defines a section af?Y regarded as a bundle ov&rwith j2(¢)(x) being a linear map
from 7, X into T;14)(, /Y . In coordinates;?(¢) is given by

X (A (), 8,0 (X1, 8y 8,07 (1),

We shall also use the notatimjﬁw2 = 9,,9,,,¢" for second partial derivatives. A section
p of J2Y — X is said to be 2-holonomic i = j?(ry ;2y o p). Continuing inductively,
one defines théth jet prolongation ofp, j*(¢), asji(--- (j1(¢))).

Consider a second-order Lagrangian density defined as a fiber-preserving map
J2y — A"1(X), whereA"t1(X) is the bundle ofn + 1)-forms onX. In coordinates,
we write

L) = L&y, i v o,

wherew = dx A -+ A dx” A dx0.

For anykth-order Lagrangian field theory, the fundamental geometric structure is the
Cartan form® ; this is an(n + 1)-form defined on/%~1y (see [9]). For second-order
field theories, the Cartan form is defined ##Y, the covariant analog of the phase space
in mechanics. The Euler-Lagrange equations may be written intrinsically as

(P]¢)*(Vv]der) =0 VvV e T(J3Y), 2.1)

where_| denotes the interior product. Traditionally, the Cartan form is defined using the
pull-back by the covariant Legendre transform of the canonical multisymplaetit)-form

on the affine dual 0§ %~1y (see [9,11,13]). In local coordinates, the Cartan forny8k

is given by

oL oL oL
O, =|\—-D dy? Awy + ——dy? Aw
(8yA g (3%‘“)) Py,

L aL\ , L
+(L - o+ Dl — |y — — i, | @, (2.2)
( i ”(8%‘#) Yooy

wherew, = 3,_|w andw,, = 9,9, w, etc. For a&th-order functionf e C®(JkY, R),
the formal partial derivative off in the directionx*, denoted byD,, f, is defined by
() (D, f) = 3,(f o j*¢) forall ¢ € C*(Y), and is a smooth function aff+1y.
In jet charts

af af
Dyf =df + =yl 4 Y (23)
dy OV iy

In the next section, we shall prove that the Cartan form arises as the boundary term in the
Lagrangian variational principle.
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2.2. Variational route to the multisymplectic form
In this section, we show that a multisymplectic structure is obtained by taking the deriva-
tive of an action functional, and use this structure to prove the multisymplectic counterpart
of the fact that in conservative mechanics, the flow of a mechanical system consists of
symplectic maps.

Let U be a smooth manifold with (piecewise) smooth closed boundary. Define the set of
smooth maps

C®¥={¢p:U — Y|axyo ¢ : U — X isanembedding

For eachp € C* set¢x = mxyo ¢ andUyx = ¢x(U) so thatgy : U — Uy is a
diffeomorphism. LetC denote the closure @ in some Hilbert or Banach space norm.
The choice of topology is not crucial in this paper, and one may assume that all fields are
smooth. The tangent space to the manifolat a pointp € C is given by

{V e C®(X, TY)|myrvo V = g andVy := Trxyo V o ¢ isavector field ork ).

ConsiderG, the Lie group ofrxy-bundle automorphismg, : Y — Y covering diffeomor-
phismspy : X — X.

Definition 2.2. The group actior® : G x C — C is given by
Dy, ¢) =nyo¢.

Note that(ny o )x = nx o ¢x, and ifp o px* € C®(myy.y), then(ny op) o pxrony’ €
COO(]T'IX(UX),Y)'

The fundamental problem of the classical calculus of variations is to extremize the action
functional over the space of sectionsiof> X.

Definition 2.3. Theaction functionalS : C — R is given by

5(9) = fU LGP0 dt) Vo eC. (2.4)
X

Definition 2.4. ¢ € C is said to bean extremunof S if

da

S(@(ny.¢) =0
2=0

for all smooth pathé — »} in G, where for each, n’ coversp}.

One may associate to eagh e C, the section o given byn} o (¢ o p3™) o (15) 2,
namelyn} o (¢ o py ™) o (y) "t mapsU} = n o ¢x (U) into ¢*(U).

If we choose the curve* such thap® = ¢ and (d/dx)|;—o d>(n§, ¢) = V, then we
have that/ = (d/dA)|;—0 ¢ andVx = (d/dA)|,=0 7% This will be used in the following
equation:
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as, v = 8

d
)‘—_
da S(¢)_dx

A=0

/ LG o h)Y)
A=0JU%

d d
= — L'Z )LO Ay—1 +/_ K*£~2 Ofl
/U @, L@ @b | g e LuP@ o)
d
=/ — E(j2(¢ko(¢§()*l))+/ Evy LG (¢ 0 ph)), (2.5)
Ux di [5—o Uy

where* stands for the pull-back, and £ denotes the Lie derivative.
Now, letVY C TY be the vertical subbundle; this is the bundle o¥erhose fibers are
given by

VyY ={v e T,Y|Tnaxy v =0}

For eachy e J1Y, there exists a natural splittiriy ¥ = imagey @ V, Y. For example, for
avectorV e TyC, lety = jL(¢ o ¢xh), V! := y(Vx), andV? := V o ¢+ — V". Then

Trxyo V" = Taxyoy(Vx) = idrx(Vx) = Vx.

On the other hand, by definitioly = Trwxyo V o gb;(l. Therefore'nxy- V' = 0 which
confirms that any vectov € 7,,C may be decomposed into its horizontal component

VI =T(@$opyh) - Vx, (2.6)
and its vertical component
Vi=Vogt—Vvh 2.7)
Remark 2.1. Notice thatV (x) € Ty ()Y forall x € U, while V" and V" are vector fields
onUx = ¢x(U).
Next, we define prolongations of automorphismsof ¥ and of element¥ e T4C.

Definition 2.5. Given an automorphismy of ¥ — X, its first prolongationj1(ny) :
JY — JlY is defined via

JXav)(y) = Ty oy o Ty

Ify : T X — T,Y,thenj (ny)(¥) : Ty X = Ty (» Y, withlocal coordinate expression

. 9 A 9 A —1\v
o) = <n’x, ny, ( My +y3ﬂ> M) (2.8)

axV vV ayB ) oxm

To define the first prolongation of a vectdre T4C, denoted by L(V), Ietn;\, be a flow of
a vector fieldv onY withvo ¢ = V.

Definition 2.6. The first prolongation1(V) of V is a vector field o1y given by

1, d 1
J V)= O J(my).

A=0
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Ifin a coordinate chart¥ = (V#, V4): identifying V with V oqb;(l, we see that (2.8) yields
the following local expression forl (V) (y):

, avA  gvA vy
Bty = (Vﬂ VA o oxk + 9yB V/f _VvAa ) (2.9)

Using induction, one can define théh prolongation of an automorphisny and thekth
prolongation of a vectoV e T,C for all k > 1, and these will be denoted ¥ (ny) and
j*(V), respectively.

Definition 2.7. For akth-order functionf € C*®(JXY, R), the variational derivative of
is the function o/ %Y given by

k
0
B (a i )
s=0

/‘-1 s

In particular, for a second-order functighe C*(J2Y, R), the variational derivative of
is the function orv4Y given by

1) a a a
L AT TR
SyA  ayA ayA Ay,
Throughout the paper we will use both |« andiy« for the interior product.

Definition 2.8. LetC* = {j*(¢ o px Mo € C}.

Theorem 2.1. Given a smooth Lagrangian densify : J2Y — A"1(X), there exist a
uniqueW e A"*t2(J4Y) given by

5L,
v = ay—Ady AON
a unique mag L € C®(C* T*C ® A"t1(X)) given by
SL
DeLL(@) -V = j* P opyH* <8 Ly (dy? A w)) (2.10)

and a unique differential for® ; € A”+1(J3Y) given by

oL oL JL
Or=—-D dy? A w, + dy2 A w
(8y§‘ g (3%‘“)) Py, T

AL 4 AL\ 4 AL 4
+(L— o +Du |l — )y —y (2.11)
( 3y5‘ v 12 (ayéu) v 3yA v

suchthati®(gp oy )* Oz = Lo j2(¢popy ™) foranys e C, and the variation of the action
functionalS is expressed by the following formula: for akiye T,C and any open subset
Uy of X such thatUy N 9X = ¢,

as; -V = [ Detw) v+ [ F@osrIAmded. (2.12)

Ux dUx
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Furthermore,

DelL(@) -V = j3(¢ 0 ¢xH*[3(V)Q,] in Uy, (2.13)
whereQ2, = dO, is the multisymplectic form o#3Y. The variational principle(2.12)
yields the Euler—Lagrange equatio(i 1) on the interior of the domain, which in coordi-
nates are given by

oL . _ 0 oL . _
3y—A<JZ<¢ o ¢y —5o (Wuzw o¢>xl>))

92 AL )
RFYSTI (3%‘# (7@ ooy ))) =0, (2.14)

while the form® ~ naturally arises in the boundary term and matches the definition of the
Cartan form given inf2.2).

Proof. The proof proceeds in three steps. We begin by computing the first variation using
(2.5). Then we show that the boundary term yields the Cartan form. Lastly, we verify the
statements related to the interior integral.

Choosd/x = ¢x(U) small enough so thatitis contained in a coordinate chart. Ifin these
coordinated/ = (V#, V4), then alongboqs;l, the coordinate expressions fog, vV, Vv
are written as

3 3 3 HA
Ve oyl by 9 @00y )T 9
dxH dxH dxH dy4
3 3 “HA\ 8
V= (V) A— = |VA- V“M —. (2.15)
dyA dxH 9y

Using the Cartan formula we first compute the second term on the right-hand side of (2.5)

/U £y, LG 0 ) = /U £y, (Lo) = /U divy (L) + iv, d(Lo)

=/ Livxcu=/ LV%wy. (2.16)
dUx aUx

Using (2.7), and the local expression for the vertical vector fi€ldwe have that
L@ o @) ™)

/‘ d
Ux da r=0

_ R P Ny WL AP PR Oy
—/UX[W,(J @0 a4 TR0

aL

o, (4o ¢;1)>(V"){1ﬂ} o, (2.17)

In the following, we shall us, f for the formal partial derivative of a functiofi (see
(2.3)), and(df/9x") will denote(d/dx")(f o j%(¢ oqb;l)). Integrating (2.17) by parts, we
obtain that
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/ oL _ B (OLY . 32 dL (WA
AR R L ©
Uy | 9yA 9xv \ayg 3xydx, \ Bysh,
L L
+f <—A(V“)A) w+/ ~ (V4] o
Ux oy} v Ux E)yuu ' "
9 [ L
—/ — )] .
ux \ 0x* \ 9y{, )

Using the factf,, = d( fw,), applying the Stoke’s formul§,do = [;,,«, and combining
the last calculation with (2.16), we obtain

aL 3 (9L 92 aL
d8¢ -V = / _A - _v (_A> + _A (VU)AL()
Ux | 0 ax¥ \ 9y} dxydxy, \ 9y),

+/ oL _ 9 (oF (VA0 + oL V)Aw, + LV
— | — w — w, wg.
aUx ay\i54 dxhk ay{?“, ' ay\é,u .

(2.18)
O

Definition 2.9. A form « on J*Y is contact, if(j¥¢)*a = 0 for all ¢ € C®(Y).

Lemma 2.1. For a smooth Lagrangian densify: J2Y — A"t1(X) there exists a unique
differential form®, e A"*1(J3Y) defined by(2.11) such that the boundary integral in
(2.18)is equal to

/ 3 0 b V) Opl.
dUyx

Furthermore,® » can be written as a sum dfw and a linear combination of a system of
contact forms o2y with coefficients being functions offY.

Proof of Lemma 2.1. Let W = (WH, WA, WL, Wi, W/ ) be an arbitrary vector field

onJ3Y, and letp := j3(¢ o ¢ 1), a map fromUx to J3Y. Then one computes

iW(dyA N wy) = WACUU - ngyA N Wyg,
iW(dyC‘ ANwy) = Wfa)ﬂ — ngyf AN wyg,

oo oxHA

ok dx* A wpg.

¢’*iw(dyA Awy) = WACUU -
Using the formula

0 if w#v,0,
dx* Awwg =1 w, if w=29, (2.19)
—wg if w=v,
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one finds that
A opyHA CE P

ax? Y axV

eriw(dy? Awy) = Who, — WP Wowp.

Similarly,
axfaxv " IxHIxV

Thus, if we letW = j3(V), use (2.9), and recall the local expression (2.15)16h)4, we
obtain that

go*iw(dyf ANwy) = W‘f‘wu - W W we

: Ao gy HA
</)*|j3(v)(dyA Awy) = (V) A0, + TVXVOCOQ,
: 32(p oy HA
‘P*|j3(V) (dy;4 A a)u) = (Vv)fqva)ll —+ a_x/"—a)fvvewg
Next, observe that?wy = iy w. Also,
0podyH 5 1.4 2podyHt 5 1,4
o/ (@odx)y, T (P odx ) Vi

These observations together with the previous identities imply the following important
formulas:

73 0 oy PV Ay Awy — v o)) = (V)4 wy,
73 0 o BV LAy Ay — yiw)] = (V) Ao,

Substituting these formulas into the boundary integral of the variational principle (2.18),
we obtain that

oL d aL oL
/BUX (3},54 9xH (ayéu)> V)%, + ayi (VO ou + wy

(2.20)

Vi
oL oL
— ‘3 —1\* ~3 _ D A _ A
./zwx] (@ odx™) {J "4 [(8%, " <_3yﬁ‘u)> dy* Ay — y, )
JL
+3y;‘,L (dy A, — yfua)) + La):| }

. 1k ). oL L
= faUXﬂw oy :fwu [(ay—A - D, (W)) Ay A o,

L L L L
+—dyA Awy + (L — —y2+ D, | — ) y4 — yA Jw
ayp, v ayd7r T oy, )Y oy,

= fa . PB@odxH Rv)de,l.

This proves the existence of a unique differential f@m and demonstrates how this form
naturally arises in the boundary integral of the variational principle. Integration by parts
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yields the boundary integral with terms that involve partial derivative¥8j4 of all orders
up tok — 1 (in our casé = 2). Eq. (2.20) shows that each partial derivativeiof)4 has an
associated + 1)-form onJ2Y, and substitution of these forms yields a unique differential
(n + 1)-form as desired. Since and its partial derivatives are functions @AY, then by
(2.3), D,L(aL/ay;‘M) is a function on/3Y, and therefor@®, is a(n + 1)-form on J3Y.

It is easy to show that

FpopyH @y Aoy —yilw) =0, jF(popyH Ay Awy — i) =0

for allintegerst > 2 and for allp € C. Therefore, ¢4 A w, — ylw and ! A, — v, @
are contact forms o2y . Hence the last statement of the lemma follows. O

A simple computation then verifies th@t, is the Cartan form so that
2@ opxH 0L =Lo jAodih.

Next, consider the interior integral of the variational principle (2.18). Sjﬁ(lﬁoqs;(l)*ijk(v)
(dy4 A w) = (VV)Aw for all integersk > 1, we obtain that

/ AL 9 ( L ) N 32 OL | | yuya
—— — | — — | — w
Uy ayA  axv \oyd 0x,0x, 8y;)4ﬂ
aL aL aL
.4 —1\%; A
= J(@odx)7lja ——D (—)+DD — | D Ao
/[;X X JHV) ayA v ayVA v ayIIJA[l.
4 1y SL . 4
= JH@ ooy ) ijayy | 7D A, (2.21)
Ux 8_)7

wheresL/8y4 is the variational derivative of. in the directiony? (see Definition 2.7).
Since L is a function of second-order by hypothesis, then its variational derivative is a

function onJ*Y . Therefore, the formt = (8L /8y*) dy? A w is an(n + 2)-form onJ4Y.
Moreover, the integrand in (2.21) written #8(¢ o ¢ )*((SL/8y™)iv (dy* A w)) defines

a unique smooth sectidBg, £ € C*®(C4, T*C ® A"T1(X)) as desired in the statement of
the theorem. Now we shall prove the following lemma.

Lemma 2.2. The formsQ; = dO, and¥ = (§L/5y*)dy? A w satisfy the following
relationship:

JH @0 b i jaan ¥ = 3@ 0y 3 QL (2.22)

forall ¢ € C and all vectorsV € TC.
Furthermore, a necessary condition fore C to be an extremum of the action functional
S is that

JBpopyHiwe =0 (2.23)
for all vector fields W oy 3y, which is equivalent to
JA@opHive =0 (2.24)

for all vector fields V orv4Y.
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Proof of Lemma 2.2. The proof will involve some lengthy computations that we partially
present below. To compute,, let us write® »~ as

o L (L) @i i 4 2L
c= =Dy — ]| @y Aw, — ylo
ayd M\ ayh, o

< (dy‘f1 Awy — yfﬂw) + Low.
Yo
Then, forw € TRY, we obtain

war =w | 2L Zp (25 [ ayA A o)
v avg ~ T\l )| T
L L
_d (ay_A - D, (ay_A>) A (WA@, — WO dyA A wyg — yAWwp)
v VL

oL
+w |: 5 :| (dy2 A Wy — yl’j\ua))
ByW

L
—d ol S (WhAw, — W/ dyt A wue — nyWng)
E)yw

) aL
+Du [ — | Wi — Wy Aws) + — (Who — WO dy? A wp).
GAZ dy

The last step is to pull-badky Q. by ¢ = j3(¢ o qbgl); this eliminates the terms with
the contact forms. In addition, using the fact that the pull-back commutes with the exterior
derivative, and applying formulas such as (2.19), we obtain that

aL

wQe = wAh w—d oL _ 9 oL Aw
¢iwReL = dy4A dyst dxr \ dypl, !
oo lgf2L o (oL
dyt dxr \ dyfl,

A<awo¢;5A 3o gxhH?

3(¢ o pxH*
ox0 v * oxv 7
Y L W i G SO i AL e W
Ay, axfoxy dxHaxy
-1 -1
+32(¢o¢x )Aw9 9 (L | 2% pogy )Aw
dxHaxy dxi \ dydl, dx?9xV
9L 9 A 9 (AL aL
__Mw _|_‘/V‘;4 — | — lw—-d /\w;l. .
dy4a ax? dxr \ ayfl, ays,
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Some cancellation and further rearrangement yields

o wA (0L _ 0 (LY 92 (8L )
giwReL = ayA  axv \oyd dxydx, \ Bysh,

Wea(¢o¢§1)/‘ AL 9 (AL 92 L
W0 5 oo \ava ) Tarax \ava ) )@
ax dy axV \ 9y dxydx, \ 9y),

Letting W = j3(V), we have that

3L 9 [ OL 32 dL
e =0V —= - — (= |+ —— — '
¢lpmie =00 (8yA dxV (3)’§‘>+3xv3xu (ay§u>)w

where the right-hand side equgfy¢ o ¢>§1)*ij4(v)\ll by (2.21). Hence, the relation (2.22)
is proved.

A necessary condition fas € C to be an extremum of the action functiotis that the
interior integral in (2.18) vanish for all vecto#$ € TC. From the calculation above, one
may readily see that it is equivalent to the condition (2.23).

Now if we let V be a vector field o #Y, then

. . SL | 4 SL . A
|V\I] =ly <5y_Ady /\a)):&y—AH/(dy /\C())
SL . . SL
= —(ivdyMH Aw—dyd Ayw) = — (VA0 — VO dy? A wy).
(gyA (SyA

Hence,

40 polyiy W oL 9 (DL . 82 dL
] = _— —_ - -
/ x 2 ayA  axv \ayd 0x,0x, 83’134;;

x| vA = V9M W
ax?
Thus, the condition
@ opyHtive =0

for all vector fieldsV on J4Y is equivalent to the condition (2.23). This completes the proof
of the lemma. d

Lemma 2.2 contains two equivalent conditionsgoe C to be extremal. Both conditions
yield the same coordinate expression of the Euler—-Lagrange equations given by

oL . _ 0 oL . _
8y—A<JZ<¢o¢X1)>— (Wuzwoasxl)))

axv

L2 (DL 2o sity) =0
o =

dxvaxt \ dys, / X '

which is the final statement of the theorem.
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Remark 2.2. As one may see the proof we have presented can be generalized to Lagrangian
densities on/¥Y. One has to modify the labeling of variables to reflect the general case.
For example,

(VO o @o = "[ROV LAy Ao — Y@,

where0 < I < (k — 1). Then the Cartan form shall arise in the boundary integral as a
linear combination of the forms abave

We shall call critical pointg of S solutions of the Euler—Lagrange equations.

Definition 2.10. We let
P ={p € Clj3¢ o pxH)*iw, = Ofor all vector fields¥ onJ3Y) (2.25)
denote the space of solutions of the Euler—Lagrange equations.

We are now ready to prove the multisymplectic form formula, a covariant generalization of
the symplectic flow theorem to second-order field theoties.

2.3. Multisymplectic form formula

If ¢* is asmooth curve of solutions of the Euler—Lagrange equatid$when such solu-
tions exist), then differentiating with respectitat2. = 0 will give a tangent vectov to the
curve ap = ¢°. By differentiating(d/dx) [0 j3(#” o (%) 1*[W_| Q] = 0, we obtain

b oy ) WlQ] =0

for all vector fieldsW on J3Y. Therefore, ifP is a submanifold o€, then for anyp € P
we may identifyT, P with the set of vectord that satisfy the above condition. However,
we do not requiré® to be a submanifold.

Definition 2.11. For any¢ € P,

F =1{V e TyClj3($ o ¢x ) E ;3 [W Q] = Ofor all vector fields/ on J3Y}
(2.26)

defines a set of solutions of the first variation equations of the Euler—Lagrange equations.
Theorem 2.2(Multisymplectic form formula).If ¢ € P, then for all V and W irF,

/; PR es LAV o2 =0, (2.27)

Proof. We follow Theorem 4.1 in [12]. Define the 1-forms andaz onC by

ai(g) -V = fU PB@ooH iR vrde,l,

1 For first-order field theories, this is Theorem 4.1 in [12].
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and
2(9) -V = /a ij3(¢ 0 ¢y [2V)d L],
so that by (2.12) and (2.13),
dSs -V =a1(¢) -V +ax(@) -V VV € TyC. (2.28)
Furthermore,
d28(¢)(V, W) = day(@)(V, W) + daz()(V, W) VYV, W e TyC.
Since &S = 0, we have that
da1(@)(V, W) + daa(@)(V, W) =0 VV, W € TyC. (2.29)

Given vectors/, W e T,C we may extend them to vector fiells W onC by fixing vector
fieldsv, w on Y such thatV = vo¢ andW = w o ¢, and lettingV(p) = v o p and
W(p) = w o p. If n} coveringn is the flow ofv, then® (n%, p) is the flow ofV. Notice
thatV(¢) = V andW(¢) = W, hence Eq. (2.29) becomes

day(V, W)(¢) + da2(V, W)(¢) = 0.
Recall that for any 1-formx onC and vector field3’, VW onC,
doo(V, W) = V[eW)] — W[aW)] — a([V, W]). (2.30)

Also recall that for a vector field? onC and a functionf onC, V[f] = df - V. We now
use the latter and (2.30) @ar. We have that

da2(V, W)(9) = V[e2OV)](@) — W[a2(V)](@) — a2([V. W])(¢)
= [d(a2(V)) - V(@) — [d(e2(V)) - WI(@) — a2() - [V, W]
= da2OWV) (@) - V —d(a2W)(@) - W —a2(d) - [V, W].  (2.31)

Similarly,
da1(@)(V, W) = dlaaOV) (@) - V —d(ea(W) (@) - W —a1(d) - [V, W].  (2.32)

Letp € P andgp’ = n; o ¢ be a curve irC through¢ such that
V=—| ¢, VeF

Now we restrictV, W to F. We shall give a detailed computation of the first term on the
right-hand side of (2.31). We have that
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i A — i Ay L A
oo (@2M))(@7) = o x=oa2(¢ ) - (wo¢®)

d
=@ f @ @Y Rw o ¢M) 10,]
2=0 73y (Ux))

d(a2(OV))(9) - V

d
= — f 72 oo P iRw)de,]
di ;20 Jouy

= / 720 ¢y Eja, GRW)Or)
aUx
= / 3@ o pxH d[PWV)d W) e,]
dUx
+ /a 3@ 0 oxH PG W) O],
Ux
where the last equality was obtained using Cartan’s formula. We have also used the fact
that W* = w o ¢* andW = w o ¢ have the saméth prolongation. Furthermore, using

Stoke’s theorem, noting thab Uy is empty, and applying Cartan’s formula once again to
d(j3(W)_|®,), we obtain that

d@2(W)(¢) - V = fa ij3<¢ 0 px ) 2V £ O ]
- /a UXj3<¢> o px LAV W) Qel. (2.33)
Similarly,
d2(V)(p) - W = /B UXj3(¢ 0 px O [ AW)IE 31,0 1]
- fa ij3<¢ 0 ¢x LWL (v) L] (2.34)
Now, j3([V, WD) = [j3(V), j3(W)]; hence,
az(@) - [V, W] = /a UXj3<¢ 0 px (AW, ;2w depr).

Recall that for a differential forre on a manifoldM and for vector fields<, Y on M,
i[x,y]a = £xiy0{ — iy£x0l.

Therefore,

(@) [V W] = [ %60 67 [0 G100 = W) IE O]

AUy
= /a . 2@ o ¢ PV AL 340 — 2V AWy,
X

—j*(W) €30, (2.35)
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where we have again used Stoke’s theorem and Cartan’s formula twice. Substituting
(2.33)—(2.35) into (2.31), we obtain that

daa($)(V, W) = / 36 0 b LR BV A .. (2.36)

Ux

We now compute (2.32). Similar computations as above yield

de1W)(@) - V = / F3 ooy i, GRW)dQp),

Ux
which vanishes for alp € P andV e F. Similarly, dw1(V))(¢) - W =0 forall¢ € P
andW e F. Finally,a1(¢) = Ofor all¢ € P. Therefore, Eq. (2.32) vanishes for ¢l P
andV, W e F. Using the latter and (2.36), Eq. (2.29) becomes

/a PG LEW) 1AW 120 =0
X

forall¢ € PandallV, W € F, as desired. O

2.4. Noether's theorem

Suppose thaf is invariant under the actio® (g, ¢) of a Lie groupG onC. This implies
that for eacty € G, ®(g, ¢) € P whenever € P. We restrict the action to elements of
P. For each elemerit of the Lie algebrag of G, let&q be the corresponding infinitesimal
generator oft restricted to elements . By the invariance oF,

S(®(expé), ¢)) = S(p) Vi

Differentiating with respect toats = 0, and using the fundamental property of the Cartan
form thatl o j2(¢ o py ) = j3(¢ 0 px1)*O 1, we find that

/U J2@ 0 by E 39O = 0.
X

Then by Theorem 2.1 and the invarianceSofve have that
0 = (b 1dS)(@) = /d . @0 o3 1% Gc@)10,]
X

=— /U R RN TG M3 (2.37)

Definition 2.12. Let J € Hom(g, T*C ® A" (J3Y)) satisfy

JPEc@) Qe =dlJE)(@)] (2.38)
forall ¢ € gand¢ € C. Then the mag : C — g* defined by
(J(@).6) =J(E) (@) VEeg, ¢eCl, (2.39)

is thecovariant momentum map of the action
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With this definition, (2.37) becomeﬁ,xd[ﬂ(q& o ¢§1)*(J(¢), &)] = 0, and since this
holds for anyUx C X, the integrand must also vanish; thus,

d[j3(¢ o ¢ H*(I(9). £)] = 0. (2.40)

On the other hand, by Stoke’s theorem we may also conclude that
/ B osH I@).£) =0. (2.41)
dUyx

Last two statements are equivalent, and we refer to them as the covariant Noether’s theorem.

3. A multisymplectic approach to the CH equation
3.1. CH equation

The completely integrable bi-Hamiltonian CH equation (see [2,4])
Uy — uyyt = —3UUy, + 2uyuyy + Ulyyy (3.1)

is a model for breaking shallow water waves that admits peaked solitary traveling waves
as solutions (see [2,3]). Such solutions, termpedkonsdevelop from any initial data with
sufficiently negative slope, and because of the discontinuities in the first derivative, these so-
lutions are difficult to numerically simulate, particularly in the case péakon—antipeakon
collision (see [3]).

The multisymplectic framework for the CH equation is intended to provide a foundation
for numerical discretization schemes that preserve the Hamiltonian structure of this model,
even at the discrete level. After developing the multisymplectic framework for (3.1), we
shall follow [12] and develop the entire discrete multisymplectic approach to second-order
field theories, concentrating on the discrete CH equation as our model problem. Although
we shall only produce the simplestultisymplectic-momentugonserving algorithm for
this equation, our construction is completely general and will allow for the creation of
kth-order accurate schemes for arbitrarily lakge

The CH equation (3.1) is usually expressed in terms of the Eulerian, or spatial velocity
field u(z, y), and is the Euler—Poincaré equation for the reduced Lagrangian

1
) =5 /(uz +u?) dy. (3.2)

Alternatively, one may express (3.1) in terms of the Lagrangian varigble ) arising from
the solution of

d
o0 ) = ult.n(x.0). (3.3)

The Lagrangian approach to the CH equation is ideally suited to the multisymplectic varia-
tional theory, and we begin by specifying our fiber bundig : ¥ — X. LetX = S x R,
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andY = S x R x R. We coordinatizex by (x,x% (or (x,#)) andY by (x1, x%, y)

(or (x,t, y)). A smooth sectiop € C°°(Y) represents a physical field and is expressed
in local coordinates byx, , n(x, t)), wheren is the Lagrangian flow solving (3.3). The
material or Lagrangian velocityy/d1)n(x, t) is an element of s nY = T(x 1) Y, Where

y =n(x,1).
Using (3.3) together with, = n/ny, the Lagrangian representation for the action may
be expressed as

1
S(p) = E/X(n"nlz + 0y 1p2) dx dr. (3.4)

The second jet bundl#2Y is a nine-dimensional manifold and two-holonomic sections of
J2Y — X have local coordinates

]2(¢) = ('x7 t, n(xv t)a Ux(xa [)’ nt(xs t)v Uxx(x, t)a T])([(.x, t)a ntX(xa t)v ntt(xa t))a

where for smooth sectiomg(x, 1) = nw(x, t). The Lagrangian densit§ : J2Y — A2(X)
is expressed as
£t x% y, y1, yo. y11. y10, yor. Y00)
= L% x% v, y1. Yo, y11, 10, Yo1. yoo) dx* A dx®.
For the CH equation the Lagrangian density evaluated along the second jet of a gection
is given by

LG2@)) = [30nen? + 17 tn2)]dx A dr. (3.5)

As our Lagrangian (3.5) depends only en yp, and yo1, the Euler—Lagrange equation
(2.14) simply becomes

3 (9L d (0L 32 [ 9L
_9 _ 2 (=) 5 Z)=o (3.6)
ax \ 0n, ot \ an; atox \ Onx

so that we have the Lagrangian version of the CH equation (3.1) given by

1 2
- <ﬂ> —n7) = (en) + (&) =0. 3.7
2 Nx . Nx / xt

By differentiatingu = (3/31)n o n~* three times, one may verify that (3.7) is indeed
equivalent to (3.1).
Now, using (2.11) we have that the Cartan fo®m is given by

oL oL oL oL
Op = dr]/\dt—(——DX<—))dr)/\dx+—dnt/\dt
1y an 9Mtx 9Mtx

oL oL oL oL
+ (L AL LD, (—) m) dx A dl, (3.8)
ony ony Onix Onix
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or
oL oL dL
Op = (dn Adt —n,dx Adr) + (— — D, (—)) (—dn Adx — n, dx A dp)
Ny an, 9tx
JL
—l—a—(dnt Adt — nxdx Adt) + Ldx A dr, (3.9
Ntx

if written in terms of the system of contact forms.
3.2. Multisymplectic form formula for the CH equation

Marsden et al. [12] in their paper have demonstrated how the multisymplectic form for-
mula for first-order field theories when applied to nonlinear wave equations generalizes
the notion of symplecticity given by Bridges in [1]. Using the example of the CH equa-
tion, we present below a simple interpretation of the multisymplectic form formula for the
second-order field theories. We show that the MFF formula is an intrinsic generalization of
the conservation law analogous to the one in Appendix D of [1].

Bridges has introduced the notion of a Hamiltonian system on a multisymplectic struc-
ture. A multisymplectic structureM, o?, . .. , 0", »°) consists of amanifold, the phase
space, and a family of pre-symplectic forms. The phase spaigea manifold modeled on
R”*+1. A Hamiltonian system on a multisymplectic structure is then represented symboli-

cally by (M, o, ..., ", «°, H) with the governing equation
0Z 0Z 0Z
o= v)+ " )+l (==, v) =(VH(Z),v) (3.10)
axl xn ot
for all vector fieldsy on M where(-, ) isan inner productofi M andZ (x1, ... , x",1r)isa

curve inM. Bridges has shown that this formulation is natural for studying wave propagation
in open systems. Bridges, in particular, has obtained the following conservation law in the
case of the wave equation [1]:

3w"(zl, Z) + ia)l(Zl, Ze) =0. (3.11)
at 0x
This law generalizes the notion of symplecticity of classical mechanics.

Let us make an appropriate choice of the phase spdder the CH equation. Our choice
is entirely governed by the coefficients in the Cartan form (3.8). Since the Lagrangian (3.5)
does not explicitly depend on time and space variables, i.e., the system is autonomous, we
identify sectionsp of ¥ with mappings;(x, 1) from R? into R, and similarly, sections of
J3Y with mappings fromR?2 into R15. The Cartan form (3.8) suggests to introduce the
following momenta:

X

p

oL oL oL oL
=—7), p'=7——Ds (—) p=—, p*=pt=p"=0 (312
0Ny on; Ontx Nt

Since® ¢ is horizontal over 1Y, the covariant configuration bundle is reallyy — X, and
one should think ofn, n,, n,;) as field variables with each field variable having conjugate
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multi-momenta. For exampley®, p’ function as conjugate spatial and temporal momenta
for the field component. Then the transformation

(77, Nx» Nt Nxxs Nxts Nix, Ntts - - ) = (77: Nxs Nt pxs ptv ptx)

defines a mapping from the space of vertical sectiong®f — X into the phase space
M = R® modeled oveX = R?. We denote this transformation BRL. Let us now state
the result that connects our paper to Bridges’ theory.

Proposition 3.1. The multisymplectic form formula (MFF) yields a multisymplectic struc-
ture (M, o, »°) such that the MFF formula becomes an intrinsic generalization of the
following conservation law: for any V, W it that aremwrxy-vertical,
d d
a—wl(TIFL - i3Vv), TFL - j3(W)) + EwO(TIFL . j3(V), TFL - j3(W)) = 0.
X
(3.13)

Moreover, the CH equation in both Eulerian fo{8il) and Lagrangian forr(8.7)is equiv-
alent to the Hamiltonian system of equations on the multisymplectic structure with the
Hamiltonian defined by

H=L—-pn.—p'n — ptxntx. (3.14)
Proof. Consider twarxy-vertical vectorsV andW in F. ThenTFL - j3(V) andTFL -

j3(W) are vertical-overX vector fields onX x M — X, whose components we shall
denote via

(v, vy yrt oyt yr%y

or just numerate byv?®, v2 v3 v4 v5 v®). Thinking of the components of the trans-
formationFL as functions o/ 3Y, we immediately see that

vt =dp* - j3V) = SPIpl,
vri=dp' - j3(vV) = APl (3.15)
Vet =dp™. j3(v) = Bp.
Using expressions (3.12) we expr&ss as
Qp =dp* Adp A dt —dp’ Adp Adx +dp™ Ady Ade
—nedp* Adx Adt — 5, dp’ Adx AdE — i dp™ A dx A dr.
Next, combining with (3.15) we obtain that
BBV dQe = (vE W — wr v 4 vt wr — wr v de

—(vP'wn — wP 'y dx,
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so that
/8 . PB@ oo PwW)dR(vyd,]
= / VAW — wAvt 4 vews — wév3)
1 105%
—(voWt — wovlydr. (3.16)

Theintegral onthe right-hand side of the above equation leads us to introduce two degenerate
skew-symmetric matriceB1, Bo onR®:

0 0 0 100 0 00 0 1 O]

0 0 0 00O 0 00 0O0O

312000001 BO:oooooo
-1 0 0 0 0 ol 0 00 0 O0 Of

0 0 0 00O -1 0 00 0O

| 0 0 -1 0 0 O] | 0 0 0 0 0 O]

To each matrixB,, we associate the 2-form” on R® given byw" (u, v) = (Byu, v) =
v" B,u, whereu, v € R8. With the definition ofo” and the use of (3.16), the multisymplectic
form formula (2.27) becomes, féry c X,

/ WX TFL - j3(V), TFL - j3(W))dt — &%(TFL - j3(V), TFL - j3(W)) = 0.
L 105%
Hence by the Stoke’s theorem,
3
/ [—wl(TFL -j3(V), TFL - j3(W))
105% 8x
)
+Ew0(TIE‘L . j%(V), TFL - j3(W))} dx Adf = 0.

SinceUy is arbitrary, we obtain the desired conservation law (3.13).
In the special case, when the componénts= 5, andW" = 5,, one may verify that

TFL - j3(V) = (i, nx, 0, P, 'y p™) s
T]FL : JS(W) = ('77 Nx, Nt va pt’ Ptx),t,

so that, lettingZ denote an elemertt, 1., n;, p*, p', p*) € M, the formula (3.11) takes
the special form

0 0
—ol(Z, Z) + —0%(Z;, Z,) =0,
0x ot

which is the complete analog of Bridges’ conservation law (3.11) for the wave equation.
Next, since the inner produg¢t, -) is independent of € M, the Hamiltonian system of
equations (3.10) on the multisymplectic structute, o, »®) may be written as

Zi o' +Z,]o® =VH,  Bi1Z,+ BoZ = VH,
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which results in

d ., 9 , OH 0  O0H 0 oH
Pt =p =7, P =T —n=- ,
ax at an ax any dx ap*
o 0H o  0H
ol T Topt ot T T px

With the choice of the Hamiltonian (3.14) the last four equations yield identities, and the
first equation becomes

%px + %pt =0.

Using the Legendre transformation expressions (3.1)fop’, the latter equation recovers

the Euler—Lagrange equation (3.6), and hence (3.7). In other words, the Euler-Lagrange
equations o/ Y are equivalent to Hamilton’s equations on the multisymplectic structure

(M, o, 00, H). O

4. Discrete second-order multisymplectic field theory
4.1. A general construction

We shall now generalize the Veselov-type discretization of first-order field theory given
in [12] to second-order field theories, using the CH equation as our example. We discretize
X byZ x Z = {(@i, j)} and the fiber bundl& by X x R. Elements oft over the base point
(i, j) are written agj; and the projectiomrxy acts ont’ by wxv(yij) = (i, j). The fiber over
(i, j) € X is denoted byyj.

For the general case of a second-order Lagrangian one must define the discrete second jet
bundle ofY, and this discretization depends on how one chooses to approximate the partial
derivatives of the field. For example, using central differencing and a fixed timé steg
space step, we have that

_ Yit1j — Yi-1j Vi1 — Yij—1  Yi—1j — 2y + Yit1;
Nx ~ T’ ne ~ T’ Nxx ~ h2 )
o VitLlj+1l = Yi4lj—1+ Yi-1j-1 — Yi-1j+1 _ Yi—1 — 2yij + yij+1
Nix ~ 4hk ) nit ~ k2 5

(4.2)
whereyjj = n(x;, t;) and{(x;, ¢;)} form a uniform grid in continuous space-time (Fig. 1).
We observe that a 9-tuple
(Vi—1j—1, Yi—1j»> Yi=1j+1s Yij=1» Yii» Yij+1> Yi+1j—1» Yi+1j> Yi+1j+1)
is sufficient to approximatg?¢ (P), whereP is in the center of the cell

Let X= denote the set of cells, i.e&xE = {Hij|(, j) € X}. Components of a cell are called
vertices, and are numbered from first to ninth. A pdintj) € X is touchedby a cell if it
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Fig. 1. Equivalent computational grid in the physical domain.

is a vertex of that cell. IV C V, then(i, j) € X is aninterior pointof U if U contains
all cells touching(i, j). Theinterior int U of U is the set of all interior points df/. The
closurecl U of U is the union of all cells touching interior points of. A boundary point
of U is a point inU and clU which is not an interior point. Theoundaryof U is the set
of boundary points, so thaty = (U NnclU) \ intU.

A sectionof the configuration bundl&# — X isamap¢ : U C X — Y such that
xy o ¢ = idy. We are now ready to define the discrete multisymplectic phase space.

Definition 4.1. The discretesecond jet bundlef Y is given by

J2Y = {(Vim1j—1, Yie1js Yi-1j+1 Yij—1 Viis Yij+1s Yit1j—1s Yit1j» Yit1j+DI G )
€X, yi—1j-1,...,Vi+1j+1 € R} = x® x RO

Thefiber overi, j) € X is denotedlei,-.We define thesecond jet extensiayf a section
¢ to be the map2¢ : X — J2Y given by
¢, Jj+D,¢G+1,j-1,9G+1)),¢G+1j+1).

Given a vector field on Y the second jet extensioof v is the vector fieldj?v on J2Y
defined by
JGi—tj-1 - Vie1j41) = W0i—1j-1), v(i—1))s v(Di—1j4+1), v(ij-1), V().
v(Yij+1), v(it1j—1), v(Vit1j), v(Vit1j+1)-

Of course, this may easily be generalized to more accurate differencing schemes that require
more than nine grid points to define second partial derivatives.

4.2. A multisymplectic-momentum algorithm for the CH equation

Restricting our attention to the CH equation and noting that its Lagrangian depends only
ony, 11, Nx, We may significantly simplify our discretization of the second jet butidlg;
this will substantially reduce our calculations and simplify the exposition.
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-1 J j+l

|l ]

—_— | ——

i+1

v

_—> | ——

Fig. 2. The rectangles which touch j).

To approximatej2¢ (P) we choose the forward difference evaluations afn;, n:

Ny A Yi+1j — Vij ~ Yij+1 — Vij nx A YVi+1j+1 — Yi+1j — Yij+1 + Vij
X h ] t k ) tx hk .

For this particular choice, our cell reduces to a rectanglectangled of X is an ordered
4-tuple of the form

O =@ ), +1 /), 0+1j+D,GJj+D).

For each rectangley®, 02, 03, andO* stand for the first, second, third, and fourth vertices,
respectively. If(i, j) is the first vertex, we shall denote the rectanglétyy The set of all
rectangles inX is denoted beD. The set-theoretical definitions of Section 4.1 apply
here. For example, a poil® = (i, j) € X is touched(see Fig. 2) by four rectangles
O, O;—15, Oi—1-1, Dij—1, etc. y
Again as (3.5) does not depend g, nit, we may restrict ourselves to a subbuntlef
the continuous/?Y defined vial3 = {s € J?Y|s,, = 0 for u = 1,0}. Then the discrete
analogB (see Fig. 3) of3 is identified with

B = {(ij, yit1)s Yit1j+1 Yi+DI G 1) € X, Vijs Yitdj, Vit1j+1s Yi+1 € R}
= XD x R%.

Fig. 3. Interpretation of an element 6fY whenX is discrete.
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For a sectiop : U C X — Y, we define thesecond jet extensianf ¢ to 15 to be the map
j2¢p:U C X — Bvia

J20G, ) = @y, (@), ¢(@%), ¢ (T3, p(O%).

Given a vector field onY we extend it to a vector fielg?v on B by

jzv(yij, Yitlj» Yitlj+1 Yij+1) = Wi, v(itr1j), v(it1j+1), v(ij+1)-

A discrete LagrangiaonBisthenafunctiord : B — R offive variableslij, y1, y2, y3, ya,
where they-variables are labeled in the order they appear in a 4-tuplel/Ligs aregular
subset ofX, i.e., U is exactly the union of its interior and boundary. ICgt denote the set
of sections off on U, soCy is the manifoldR!V!.

Definition 4.2. Thediscrete actioris a real valued function ofiy defined by the rule

S@e)y= >, Loj*G.j). (4.2)
Ocv:a. =0

Given a sectiop on U acting asp (i, j) = yjj, one can define an elemeWite T,Cy to
beamapV : U — TYacting asV (i, j) = (¢(, j), vjj), whereyj is thought as a vector
emanating fromy;j = ¢ (i, j). Given an elemen¥ e TyCy one can always extend it to a
vector fieldv on Y. On the other hand, given a vector fieldn Y, V = v o ¢ is an element
of TyCy. Thus, it is sufficient to work with vector fieldson Y alone.

If vis a vector field or¥, consider its restriction|y; to the fiberYj. Let ;! : Yij — Yjj
be the flow ofv|yij . Then by definition of the flow,

. d
@G, j) = o

F (¢, ).
A=0
Therefore, there is the 1-parameter family of section&/attefined byp* = F} o ¢ such
that¢® = ¢ and(d/dA)|,—0¢”* = v o ¢ = V. Thus, thevariational principleis to seek
those sectiong for which

5| S =0 (4.3)

A=0

for all vector fieldsv onY.
4.3. Discrete Euler—Lagrange equations

With our choice off3, the discrete Lagrangian for the CH equation is

y2 — y1 (va — y1)? n h (y3—y2—ya+y1)?
h k2 Y2 —y1 h2k2

1
L(y1,y2, 3, y4) = = ( ) .(4.4)

2

The variational principle yields theiscrete Euler—Lagrange field equatio(BEL equa-
tions) as follows. Choose an arbitrary poiit j) € U. Henceforth, with a slight abuse
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of notation, we shall writeyj for ¢ (i, j). The action (4.2), written with its summands
containingyj; explicitly, is (see Figs. 2, 3)
S =+ +Lij, Yi+1j» Yi+1j+1, Yij+1) + L(Yi-1j, Yij» Yij+1, Yi-1j+1)
+L(Yi—1j-1, Yij—1, Yij» Yi-1j) + LDij—1, Yi+1j—1, Yi+1j, Yij) + - .
Differentiating with respect tg; yields the DEL equations:
oL

B—(Yij, Yi+lj> Yi+1j+1, Yij+1)
yi

oL
+8—(yi—1j, Yiis Yij+1, Yi—1j+1)
y2

+£(Yi—1/—l’ Yij—1, Yij» Yi-1j) + E()’ij—l» Yit+1j—1, Yi+1j, ¥ij) =0
dys ’ 0y4
forall (i, j) € intU. Equivalently, these equations may be written as
> 2—;@@1), ¢(0%), (%), ¢(@*) =0 (4.5)
506, H=01
for all (i, j) € intU. Computing and evaluatingL/dy; along rectangles touching an

interior point (i, j), and substituting these expressions into (4.5), we obtain the discrete
Euler-Lagrange equations for the CH equation:

(Dkyitrj — Deyij)? _ (Dryij — Aryie1j)? _ (Li)?

2hk2(Ahyij)2 2hk2(Ahyi,1j)2 2hk2
Jr(Akyi—lj)z n (Aryityj — Awyip)  (Aryij — Akyi-1j)
2hk2 hk2 (A, yij) hk2(Apyi-1/)
_ (Aryivrj-1 = Awyij-1) | (Aryij—1 — Akyi-1j-1)
hk?(Apyij—1) hk2(Apyi-1j-1)
(Apyip) (Aryip)  (Apyij—1) (Akyij-1)
_ —0, 4.6
hk2 hk2 (4.6)
where
ApYij = Yij+1 — Yij ApYi-1j = Yi—1j+1 — Yi—1j»
ApYij = Yi+1j — Yij» AkYit1j = YVi+1j+1 — Yit1j-

To see that (4.6) is indeed approximating the continuous Euler—Lagrange equation (3.7),
notice that the first two terms combine to approximate

1 <&>2 o 11| (Aryit1j — Aryi)/hk)? ~ ((Aryij — Aryi—1j)/hk?
2\ \nx 2h (Anyi/h)? (Apyi-1j/h)? '
As to the third and fourth terms of (4.6),

P O e N =2l 2 (dwicy )
2\x = 50 k k '
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Next, the fifth, sixth, seventh, and eighth terms combine as
(@) L [(((Akyiﬂj - Akyij)/hk)> 3 (((Akyij - Akyilj)/hk)>
ne )i K (Anyij/ ) (Anyi-1j/h)
3 (((Akyi+1j1 — Akyijl)/hk)) 4 <((Akyu1 — Akyiljl)/hk)>]
(Anyij—1/h) (Anyi—1j-1/h) .
Finally, the last two terms of (4.6) approximate

1 Anyij Akyi  Anyij-1 Akyij—1>

U % ( h A h X

The numerical scheme (4.6) proceeds as follows: suppose that
ApYij, DnYi-1j, AnYi—1j-1, DpYij—1, DkYij—1, DkYi-1j-1, Dkyit+1j-1
as known from the two previous time steps; then (4.6) may be written as
F(Aryij, Dkyitij, Dkyi-1;) = 0.
These are implicit equations which must be solvedyipr1, 1 <i < N, whereN is the
size of the spatial grid.

4.4. Discrete Cartan form

We consider arbitrary variations which are in no way constrained on the bouaitfary
For each(i, j) € aU there is at least one rectanglelintouching(i, j) since(, j) € clU
andU is regular. On the other hand, not all four rectangles touching) are inU since
(i, j) ¢ intU. Therefore, eacly, j) € aU occurs as théth vertex for either one, two, or
three of thd € 1, 2, 3, 4 and the correspondirith boundary expressions are given by

oL .. oL ..
— Oij» Yit+1j> Yit1j+1, i+ V E, J), —i-1j» Yij» Yij+1, i1+ V {, j),
ay1 dy2

oL L. oL ..
— (Vi—1j-1, Yij=1, Vij» Yi—1) VG, J), — (Vij—1, Yi+1j—1, Yi+1, Yip VG, ),
dy3 9y4

4.7)

whereyjj = ¢ (i, j). The sum of all such terms is the contribution 8 lom the boundary
aU . We thus define the four 1-forms dh< J2Y by

1/, .
®L(ylj » Yi+1lj, Yi+1j+1, yIH—l) : (vyij > Uyiptjs> Uyigtjs1s inj+1)
oL

20, R ..
OF Oij» Yit1j» Vit 1j+1s Yij+1) - Wyys Uy g0 Vyiggjigs Vyjgr)

oL
= 8—}]2(}4]» Yit1js Yi+1j+1 Yij+1) - (0, vy,,4;, 0,0,
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3
OF (Yij» Yi+1js Yi+1j+1 Yij+1) - (U)’ij7 Uyitaj Uyitaj410 U_Vij+1)
oL
= 8—y3(yij s Yit1js Yi+1j+1s Yii+1) - (0,0, vy, 15,4, 0),

4
®L(yij » Yitlj, Yi+1j+1, }’ij-',-l) ’ (U.Vij > Uyt Uyigtjras inj+1)
aL

We regard the 4-tuple®? G)i, @i, @‘D as being the discrete analog of the multisymplectic
form ® ~. Given a vector field onY such thatV = v o ¢, the first expression from the list

(4.7) becomes([j2¢)* (j?v_| ©1)](, j), the others written similarly. With this notationSd
may be expressed as

dS@@)- v =Y > GPerGPvdenlah

@.)eintU \ Ocy s, jy=C1

+ ) Yoo G GPvdelah | (4.8)

()edU \ Ocv::. =00
4.5. Discrete multisymplectic form formula

For a rectanglél in X, define the projection : Cy — B by
(@) = (O, p(OY, $(T%), (0%, p ().

Calculating the formra @’L onCy gives

oL
(O @) -V = 8—M<¢<Dl), $(0%), $(O%), @) V(D).

This immediately implies that the variation (4.8) can be written as

dS@¢)-V =Y. Y. @e@ -V

@)entU \ Ocy.; i, j)=01

+ > Yoo @@ v (4.9)

N \Ocw;t; i, )=

Define the 1-formsr; andaz on the space of sectiorty; to be the first and the second
terms on the right-hand side of (4.9), respectively.

As in Section 4.4 we would like to derive the discrete analog of symplecticity of the flow
in mechanics. Let* be a curve of solutions of (4.5) that passes throggit zero with
V = (d/dx)|5—0¢”. Then for each interior poin, j) and each, the following holds:
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aL
> a—yl(w(ul), ¢* (%), 9" (%), ¢*([@%) = 0.
;06 )=

Differentiating these equations with respect ttA = 0, we obtain the following definition.

Definition 4.3. If ¢ is a solution of the discrete Euler-Lagrange equations (4.5), then a
first-variationequation solution ap is a vectorV e T;Cy such that for eacly, j) € int U,

Y
0°L
Yo D @O@H,0@),6@),6@H)VE =0, (4.10)
— vy
10, H=0

By definition of the formsy; andwy, dS = a1+ as. Since dS =0, dag+day = 0. Using
(4.9) and denoting the vertices of by y1, y2, y3, y4, we have tha@lL = (dL/dy;) dyy,
which implies that for all =1, 2, 3, 4,

4 2

32L
Q& =>

= vy

dyx A dy;.

Therefore,

TR @)V, W)
= Qb (@) Ty - V, Tymy - W)
=@ (e@Y @) - (v@hH - vy, wah---wah))

442
0°L
k=1

(4.11)

Substitution of (4.11) into the exterior derivative of the right-hand side of (4.9) yields
daa(@)(V, W)=

(i,j)eintu

4 42
d°L
X D5 @@ @) v@EHw@E) —vahwah) |,
Ocvitsp=0ik=1

daa($)(V, W) = )

(i.j)edly

4921 1 4 ' l 1 .
Z Zaykayl(¢(|j )@V OHWOT) — VO@)W@F))
Ocu:i; i, j)=0'k=1

When specialized to two first-variation solutioisand W at ¢, da1(¢)(V, W) vanishes,
because for each interior poi@t j) all four rectangles touching it are containediinand
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v(@) = vV, j) andw (@) = W(, j). Therefore, d; = 0 and the equation’$ = 0
becomes d, = 0, which in turn is equivalent to

> Yo G GPwd P deplah | =0 (4.12)

(.))€dU \ Ocu.1. i, jy=00'

for all vector fieldsv, w on Y. This is the discrete analog of the multisymplectic form
formula for the continuous space—time.
We observe thatl = ©1 + ®2 + ©3 + ©7, which shows that

Q1 +97+03+Qf =0,

which in turn implies that only three of the 2-f0rr§§L, 1 =1,2,3,4, are in fact inde-
pendent. In addition, this implies that fogé&ven and fixedectangled,

4
0= AR @)V, W)
=1

4 4 azL
=2 D 5 @@ e @V EHWE) - VEHWE)
i Ovkdy

for all sectionsp and all vectors/, W.
4.6. Discrete Noether’s theorem

We would like to derive the discrete version of the Noether’s theorem for second-order
field theories. This is not the most general form possible as we are working with a partic-
ular example. However, it is such as to facilitate the derivation of any other case without
significant effort.

Suppose that a Lie group with a Lie algebrgy acts onY by vertical symmetries such
that the Lagrangiaik is invariant under the action. Vertical action simply means that the
base elements froki are not altered under the action, hence the action restricts to each fiber
of Y.Let® : G x Y — Y denote the action af onY. Foreveryg € G, let®, : ¥ — Y
be given byyj — ®(g, yij). We also use the notatign- y = ®,(y) for the action. Then
there is an induced action 6f on B defined in a natural way:

g - (1, y2, ¥3, ya) = (D(g, y1), P(g, y2), (g, y3), (g, ya)).

Recall that the infinitesimal generator of an action (of a Lie gréupn a manifoldM)
corresponding to a Lie algebra eleméne g is the vector fields,, on M obtained by
differentiating the action with respect toat the identity in the directiog. By the chain
rule,

d
Em(z) = @ [exp(t&) - 2],

where exp is the Lie algebra exponential map.



364 S. Kouranbaeva, S. Shkoller/Journal of Geometry and Physics 35 (2000) 333-366

Using this formula, we immediately see that

EB(Y1, ¥2, ¥3, ya) = (§y (1), &y (2), &y (¥3), &y (¥4)).

The invariance of the Lagrangian under the action implies that

(pJdL =0 V& eg,
which, for a giverd, is equivalent to

4

oL
D 5o 0 y2, 33, ya)r () =0 (4.13)
3y,

forall & € g and all(y1, y2, y3, y4) € B. For eachy, let us denote byr : B — Y
the projection onto théth component. Using this projection the four components of the
infinitesimal generatofz are expressed as

4 4
0
5= fz=) (Eromg) .
=1 =1 Y

Hence, Eqg. (4.13) becomes

4
Y £p O, =0 Veeg (4.14)
=1

We observe that for eadh

oL
l 1
5134 O, = 3_)11 “(§y o 7T|:|’)

is a function onB which we denote by’ (¢). Notice that/! (&) = 51134 ®’L is the discrete
multisymplectic analog ofy, |w; = dJ (§) in classical mechanics so thgy is the global
Hamiltonian vector field off (£). Many symmetry groups act by special canonical transfor-
mations, i.e., £,0; = 0, in which case/ (&) = £y _|0.. In a such case](¢) is uniquely
defined.

Sincetg is linear ing, so are the functiong' (¢£), and we can replace the Lie group action
by a Lie algebra actiog — £g. Finally, we are ready to define the momentum maps.

Definition 4.4. There are fourg*-valuedmomentum mapping®, [ = 1,2,3,4 onB
defined by

("1, v2. y3, ya), &) = J' () (y1. y2, ¥3. ya) (4.15)
forall & € g and(y1, y2, y3, ya) € B, where(-, -) is the duality pairing.
Eqg. (4.14) implies that

F+12+13+7%=0,
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S0, as in the case of the Lagrangian 2-forms, only three of the four momenta are essentially
distinct.

The discrete version of the Noether theorem for second-order field theories now follows.
Define the action of the Lie grou@ onCy by

8- ¢p=%g00, ie (g- ). j) =P ¢0 ),

since the Lagrangian i§-invariant, so

Sg-¢) =Y Loj*g-$)OhH =Y Lg-¢@H--g-p@")

Ocu Ocu
= Y L@@YH @) =S9).
Ocu

Once again letting = exp(z&) and differentiating with respect toats = 0, we obtain
that (éc,, |dS)(¢) = 0 V¢ € Cy. One can readily verify thaie, (¢) = &y o ¢, which is
an element of yCy. Thus,

dS(#) - (v 0¢) =0 (4.16)

forall¢ € gande € Cy. SinceS is G-invariant, thenG sends critical points af to them-
selves, or in other words, the action restricts to the space of solutions of the Euler—Lagrange
equations. Therefore, ip is a solution, so isp’ = exp(t¢) - ¢, where¢® = ¢ and
(d/dt)|,—0 ¢’ = &y o ¢. Substitutingg’ into the discrete Euler—Lagrange equations and
differentiating with respect to atr = 0, we obtain that for ang and¢, &y o ¢ is a
first-variation equation solution. Using (4.8), (4.16) becomes

aL
0=dS(¢)- Grop) = Y. > a—yl(¢(ml)~--¢(m4)>syo¢(m’>

.)€V \ Ocu.1., j=00

= > > ErdehHeah @)

(.)€l \ Ocy: i, j=CT

-y Y Tea@h-e@nH®

@)U \ Ocu.i; i, j)=0

for all ¢ from the solution space and d@ll Thus, the discrete version of the Noether's
theorem is

> oo [GPeTah | =0 (4.7)

(.)edU \ Ocy;, =1

for all ¢ from the solution space.
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