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Abstract

This paper presents a geometric-variational approach to continuous and discrete second-order
field theories following the methodology of [Marsden, Patrick, Shkoller, Comm. Math. Phys. 199
(1998) 351–395]. Staying entirely in the Lagrangian framework and lettingY denote the configu-
ration fiber bundle, we show that both the multisymplectic structure onJ 3Y as well as the Noether
theorem arise from the first variation of the action function. We generalize the multisymplectic form
formula derived for first-order field theories in [Marsden, Patrick, Shkoller, Comm. Math. Phys.
199 (1998) 351–395], to the case of second-order field theories, and we apply our theory to the
Camassa–Holm (CH) equation in both the continuous and discrete settings. Our discretization pro-
duces a multisymplectic-momentum integrator, a generalization of the Moser–Veselov rigid body
algorithm to the setting of nonlinear PDEs with second-order Lagrangians. © 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

This paper continues the development of the variational approach to multisymplectic
field theory introduced in [12]. In that paper, only first-order field theories were considered.
Herein, we shall focus on second-order field theories, i.e., those field theories governed
by Lagrangians that depend on the space–time location, the field, and its first and second
partial derivatives.
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Multisymplectic geometry and its applications to covariant field theory and nonlinear
partial differential equations (PDEs) has a rich and interesting history that we shall not
discuss in this paper; rather, we refer the reader to [5–12] and the references therein. The
covariant multisymplectic approach is the field-theoretic generalization of the symplectic
approach to classical mechanics. The configuration manifoldQ of classical Lagrangian
mechanics is replaced by a fiber bundleY → X over the(n + 1)-dimensional space–time
manifoldX, whose sections are the physical fields of interest; the Lagrangian phase space
is TQ in Lagrangian mechanics, whereas forkth-order field theories, the role of phase space
is played by thekth jet bundle ofY, J kY , thus reflecting the additional dependence of the
fields on spatial variables.

For a given smooth LagrangianL : TQ → R, there is a distinguished symplectic 2-form
ωL on TQ, whose Hamiltonian vector field is the solution of the Euler–Lagrange equa-
tions of Lagrangian mechanics. Lagrangian field theories, on the other hand, governed by
covariant LagrangiansL : J kY → 3n+1(X), can be completely described by the multi-
symplectic(n+2)-form�L onJ 2k−1Y , the field-theoretic analog of the symplectic 2-form
ωL of classical mechanics. In the case thatX is one-dimensional,�L reduces to the usual
time-dependent 2-form of classical nonautonomous mechanics (see [13]).

Traditionally, the symplectic 2-formωL as well as the multisymplectic(n + 2)-form
�L are constructed on the Lagrangian side, using the pull-back by the Legendre trans-
form of canonical differential forms on the dual or Hamiltonian side. Recently, however,
Marsden et al. [12] have shown that for first-order field theories whereinL : J 1Y →
3n+1(X), �L = d2L arises as the boundary term in the first variation of the action∫
X
L ◦ j1φ for smooth mappingsφ : X → Y . This method is advantageous to the tradi-

tional approach in that
1. a complete geometric theory can be derived while staying entirely on the Lagrangian

side, and
2. multisymplectic structure can be obtained in non-standard settings such as discrete field

theory.
The purpose of this paper is to generalize the results of Marsden et al. [12] to the case that
L : J 2Y → 3n+1(X). In Section 2, we prove in Theorem 2.1, that a unique multisymplectic
(n+2)-form arises as the boundary term of the first variation of the action function. We then
prove in Theorem 2.2 the multisymplectic form formula for second-order field theories, a
covariant generalization of the fact that in conservative mechanics, the flow preserves the
symplectic structure. We then obtain the covariant Noether theorem for second-order field
theories, by taking the first variation of the action function, restricted to the space of solutions
of the covariant Euler–Lagrange equations.

In Section 3, we use our abstract geometric theory on the Camassa–Holm (CH) equation,
a model of shallow water waves that simultaneously exhibits solitary wave interaction and
wave-breaking. We show that the multisymplectic form formula produces a new conser-
vation law ideally suited to study wave instability, and connect our intrinsic theory with
Bridges’ theory of multisymplectic structures (see [1,12]).

Section 4 is devoted to the discretization of second-order field theories. We are able to
use our general theory to produce numerical algorithms for nonlinear PDEs governed by
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second-order Lagrangians; these naturally respect a discrete multisymplectic form formula
and a discrete Noether theorem. Again, we demonstrate this methodology on the CH equa-
tion. Of course, we would have been pleased to see that the multisymplectic numerical
schemes proposed here, in practice, capture dynamics of the signature “peakon” solutions
of the CH equation. However, the practical applications of these new numerical schemes
are beyond the scope of the present work.

2. Variational principles for second-order classical field theory

2.1. Multisymplectic geometry

In this section, we review some aspects of the following multisymplectic geometry
[9,11–13].

Let X be an orientable (n + 1)-dimensional manifold (which in applications is usually
space–time) and letπXY : Y → X be a fiber bundle overX. Sectionsφ : X → Y of this
covariant configuration bundlewill be the physical fields. The space of sections ofπXY will
be denoted byC∞(πXY) or by C∞(Y ). The vertical bundleVY is the subbundle kerT πXY

of TY, whereT πXY denotes the tangent map of theπXY.
If X has local coordinatesxµ, µ = 1, 2, . . . , n, 0, adapted coordinates onY areyA, A =

1, . . . , N , along the fibersYx := π−1
XY(x), wherex ∈ X andN is the fiber dimension ofY .

J kY denotes thekth jet bundle ofY , and this bundle may be defined inductively by
J 1(· · · (J 1Y )). Recall that the first jet bundleJ 1Y is the affine bundle overY whose fiber
overy ∈ Yx consists of those linear mappingsγ : TxX → TyY satisfying

T πXY ◦ γ = Identity on TxX.

Coordinates(xµ, yA)onπXYinduce coordinatesyA
µ on the fibers ofJ 1Y . Givenφ ∈ C∞(Y ),

its tangent map atx ∈ X, denoted byTxφ is an element ofJ 1Yφ(x). Therefore, the map
x → Txφ defines a section ofJ 1Y regarded as a bundle overX. This section is denoted by
j1(φ) and is called the first jet ofφ, or the first prolongation ofφ. In coordinates,j1(φ) is
given by

xµ 7→ (xµ, φA(xµ), ∂νφ
A(xµ)),

where∂ν = ∂/∂xν . A section of the bundleJ 1Y → X which is the first prolongation of
the section ofY → X is said to be holonomic.

The first jet bundleJ 1Y is the appropriate configuration bundle for first-order field the-
ories, i.e., field theories governed by Lagrangians which only depend on the space–time
position, the field, and the first partial derivatives of the field. Herein, we shall focus on
second-order field theories that are governed by Lagrangians which additionally depend
on the second partial derivatives of the fields; thus, in second-order field theories, the La-
grangian is defined onJ 2Y ≡ J 1(J 1Y ). Let us be more specific.

Definition 2.1. The second jet bundle is the affine bundle overJ 1Y whose fiber atγ ∈ J 1Yy

consists of linear mappingss : TxX → Tγ J 1Y satisfying
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T πX,J 1Y ◦ s = Identity on TxX.

One can define the second jet prolongation of a sectionφ : X → Y, j2(φ), asj1(j1(φ)),
that is a mapx 7→ Txj

1(φ), wherej1(φ) is regarded as a section ofJ 1Y overX. This map
defines a section ofJ 2Y regarded as a bundle overX with j2(φ)(x) being a linear map
from TxX into Tj1(φ)(x)J

1Y . In coordinates,j2(φ) is given by

xµ 7→ (xµ, φA(xµ), ∂µ1φ
A(xµ), ∂µ2∂µ1φ

A(xµ)).

We shall also use the notationφA
,µ1µ2

≡ ∂µ2∂µ1φ
A for second partial derivatives. A section

ρ of J 2Y → X is said to be 2-holonomic ifρ = j2(πY,J 2Y ◦ ρ). Continuing inductively,
one defines thekth jet prolongation ofφ, jk(φ), asj1(· · · (j1(φ))).

Consider a second-order Lagrangian density defined as a fiber-preserving mapL :
J 2Y → 3n+1(X), where3n+1(X) is the bundle of(n + 1)-forms onX. In coordinates,
we write

L(s) = L(xµ, yA, yA
µ1

, yA
µ1µ2

)ω,

whereω = dx1 ∧ · · · ∧ dxn ∧ dx0.
For anykth-order Lagrangian field theory, the fundamental geometric structure is the

Cartan form2L; this is an(n + 1)-form defined onJ 2k−1Y (see [9]). For second-order
field theories, the Cartan form is defined onJ 3Y , the covariant analog of the phase space
in mechanics. The Euler–Lagrange equations may be written intrinsically as

(j3φ)∗(V |d2L) = 0 ∀V ∈ T (J 3Y ), (2.1)

where | denotes the interior product. Traditionally, the Cartan form is defined using the
pull-back by the covariant Legendre transform of the canonical multisymplectic(n+1)-form
on the affine dual ofJ 2k−1Y (see [9,11,13]). In local coordinates, the Cartan form onJ 3Y

is given by

2L =
(

∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

))
dyA ∧ ων + ∂L

∂yA
νµ

dyA
ν ∧ ωµ

+
(

L − ∂L

∂yA
ν

yA
ν + Dµ

(
∂L

∂yA
νµ

)
yA
ν − ∂L

∂yA
νµ

yA
νµ

)
ω, (2.2)

whereων = ∂ν |ω andωµν = ∂ν |∂µ |ω, etc. For akth-order functionf ∈ C∞(J kY,R),
the formal partial derivative off in the directionxµ, denoted byDµf , is defined by
(jk+1φ)∗(Dµf ) = ∂µ(f ◦ jkφ) for all φ ∈ C∞(Y ), and is a smooth function onJ k+1Y .
In jet charts

Dνf = ∂νf + ∂f

∂yA
yA
ν + · · · + ∂f

∂yA
µ1···µk

yA
µ1···µkν

. (2.3)

In the next section, we shall prove that the Cartan form arises as the boundary term in the
Lagrangian variational principle.
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2.2. Variational route to the multisymplectic form

In this section, we show that a multisymplectic structure is obtained by taking the deriva-
tive of an action functional, and use this structure to prove the multisymplectic counterpart
of the fact that in conservative mechanics, the flow of a mechanical system consists of
symplectic maps.

Let U be a smooth manifold with (piecewise) smooth closed boundary. Define the set of
smooth maps

C∞ = {φ : U → Y |πXY ◦ φ : U → X is an embedding}.
For eachφ ∈ C∞ setφX := πXY ◦ φ andUX := φX(U) so thatφX : U → UX is a
diffeomorphism. LetC denote the closure ofC∞ in some Hilbert or Banach space norm.
The choice of topology is not crucial in this paper, and one may assume that all fields are
smooth. The tangent space to the manifoldC at a pointφ ∈ C is given by

{V ∈ C∞(X, TY)|πY,TY ◦ V = φ andVX := T πXY ◦ V ◦ φ−1
X is a vector field onX}.

ConsiderG, the Lie group ofπXY-bundle automorphismsηY : Y → Y covering diffeomor-
phismsηX : X → X.

Definition 2.2. The group action8 : G × C → C is given by

8(ηY , φ) = ηY ◦ φ.

Note that(ηY ◦φ)X = ηX ◦φX, and ifφ ◦φ−1
X ∈ C∞(πUX,Y ), then(ηY ◦φ) ◦φ−1

X ◦ η−1
X ∈

C∞(πηX(UX),Y ).

The fundamental problem of the classical calculus of variations is to extremize the action
functional over the space of sections ofY → X.

Definition 2.3. Theaction functionalS : C → R is given by

S(φ) =
∫

UX

L(j2(φ ◦ φ−1
X )) ∀φ ∈ C. (2.4)

Definition 2.4. φ ∈ C is said to bean extremumof S if

d

dλ

∣∣∣∣
λ=0
S(8(ηλ

Y , φ)) = 0

for all smooth pathsλ 7→ ηλ
Y in G, where for eachλ, ηλ

Y coversηλ
X.

One may associate to eachφλ ∈ C, the section ofY given byηλ
Y ◦ (φ ◦ φ−1

X ) ◦ (ηλ
X)−1,

namelyηλ
Y ◦ (φ ◦ φ−1

X ) ◦ (ηλ
X)−1 mapsUλ

X := ηλ
X ◦ φX(U) into φλ(U).

If we choose the curveφλ such thatφ0 = φ and(d/dλ)|λ=0 8(ηλ
Y , φ) = V , then we

have thatV = (d/dλ)|λ=0 φλ andVX = (d/dλ)|λ=0 ηλ
X. This will be used in the following

equation:
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dSφ · V = d

dλ

∣∣∣∣
λ=0
S(φλ) = d

dλ

∣∣∣∣
λ=0

∫
Uλ

X

L(j2(φλ ◦ (φλ
X)−1))

=
∫

UX

d

dλ

∣∣∣∣
λ=0
L(j2(φλ ◦ (φλ

X)−1)) +
∫

UX

d

dλ

∣∣∣∣
λ=0

(ηλ
X)∗L(j2(φ ◦ φ−1

X ))

=
∫

UX

d

dλ

∣∣∣∣
λ=0
L(j2(φλ ◦ (φλ

X)−1)) +
∫

UX

£VX
L(j2(φ ◦ φ−1

X )), (2.5)

where∗ stands for the pull-back, and £ denotes the Lie derivative.
Now, letVY ⊂ TYbe the vertical subbundle; this is the bundle overY whose fibers are

given by

VyY = {v ∈ TyY |T πXY · v = 0}.
For eachγ ∈ J 1Yy there exists a natural splittingTyY = imageγ ⊕VyY . For example, for
a vectorV ∈ TφC, let γ = j1(φ ◦ φ−1

X ), V h := γ (VX), andV v := V ◦ φ−1
X − V h. Then

T πXY ◦ V h = T πXY ◦ γ (VX) = idTX(VX) = VX.

On the other hand, by definition,VX = T πXY◦ V ◦ φ−1
X . Therefore,T πXY · V v = 0 which

confirms that any vectorV ∈ TφC may be decomposed into its horizontal component

V h = T (φ ◦ φ−1
X ) · VX, (2.6)

and its vertical component

V v = V ◦ φ−1
X − V h. (2.7)

Remark 2.1. Notice thatV (x) ∈ Tφ(x)Y for all x ∈ U , whileV h andV v are vector fields
onUX = φX(U).

Next, we define prolongations of automorphismsηY of Y and of elementsV ∈ TφC.

Definition 2.5. Given an automorphismηY of Y → X, its first prolongationj1(ηY ) :
J 1Y → J 1Y is defined via

j1(ηY )(γ ) = T ηY ◦ γ ◦ T η−1
X .

If γ : TxX → TyY , thenj1(ηY )(γ ) : TηX(x)X → TηY (y)Y , with local coordinate expression

j1(ηY )(γ ) =
(

η
µ
X, ηA

Y ,

(
∂ηA

Y

∂xν
+ γ B

ν

∂ηA
Y

∂yB

)
(η−1

X )ν

∂xµ

)
. (2.8)

To define the first prolongation of a vectorV ∈ TφC, denoted byj1(V ), letηλ
Y be a flow of

a vector fieldv onY with v ◦ φ = V .

Definition 2.6. The first prolongationj1(V ) of V is a vector field onJ 1Y given by

j1(V ) = d

dλ

∣∣∣∣
λ=0

j1(ηλ
Y ).
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If in a coordinate chartV = (V µ, V A); identifyingV with V ◦φ−1
X , we see that (2.8) yields

the following local expression forj1(V )(γ ):

j1(V )(γ ) =
(

V µ, V A,
∂V A

∂xµ
+ ∂V A

∂yB
γ B
µ − γ A

ν

∂V ν

∂xµ

)
. (2.9)

Using induction, one can define thekth prolongation of an automorphismηY and thekth
prolongation of a vectorV ∈ TφC for all k ≥ 1, and these will be denoted byjk(ηY ) and
jk(V ), respectively.

Definition 2.7. For akth-order functionf ∈ C∞(J kY,R), the variational derivative off
is the function onJ 2kY given by

δf

δyA
=

k∑
s=0

(−1)sDµ1 · · · Dµs

(
∂f

∂yA
µ1···µs

)
.

In particular, for a second-order functionf ∈ C∞(J 2Y,R), the variational derivative off
is the function onJ 4Y given by

δf

δyA
= ∂f

∂yA
− Dν

(
∂f

∂yA
ν

)
+ DνDµ

(
∂f

∂yA
νµ

)
.

Throughout the paper we will use bothV |α andiV α for the interior product.

Definition 2.8. Let C4 = {j4(φ ◦ φ−1
X )|φ ∈ C}.

Theorem 2.1. Given a smooth Lagrangian densityL : J 2Y → 3n+1(X), there exist a
unique9 ∈ 3n+2(J 4Y ) given by

9 = δL

δyA
dyA ∧ ω,

a unique mapDELL ∈ C∞(C4, T ∗C ⊗ 3n+1(X)) given by

DELL(φ) · V = j4(φ ◦ φ−1
X )∗

(
δL

δyA
iV (dyA ∧ ω)

)
, (2.10)

and a unique differential form2L ∈ 3n+1(J 3Y ) given by

2L =
(

∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

))
dyA ∧ ων + ∂L

∂yA
νµ

dyA
ν ∧ ωµ

+
(

L − ∂L

∂yA
ν

yA
ν + Dµ

(
∂L

∂yA
νµ

)
yA
ν − ∂L

∂yA
νµ

yA
νµ

)
ω (2.11)

such thatj3(φ ◦φ−1
X )∗2L = L◦ j2(φ ◦φ−1

X ) for anyφ ∈ C, and the variation of the action
functionalS is expressed by the following formula: for anyV ∈ TφC and any open subset
UX of X such thatUX ∩ ∂X = ∅,

dSφ · V =
∫

UX

DELL(φ) · V +
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |2L]. (2.12)
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Furthermore,

DELL(φ) · V = j3(φ ◦ φ−1
X )∗[j3(V ) |�L] in UX, (2.13)

where�L = d2L is the multisymplectic form onJ 3Y . The variational principle(2.12)
yields the Euler–Lagrange equations(2.1)on the interior of the domain, which in coordi-
nates are given by

∂L

∂yA
(j2(φ ◦ φ−1

X )) − ∂

∂xν

(
∂L

∂yA
ν

(j2(φ ◦ φ−1
X ))

)

+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

(j2(φ ◦ φ−1
X ))

)
= 0, (2.14)

while the form2L naturally arises in the boundary term and matches the definition of the
Cartan form given in(2.2).

Proof. The proof proceeds in three steps. We begin by computing the first variation using
(2.5). Then we show that the boundary term yields the Cartan form. Lastly, we verify the
statements related to the interior integral.

ChooseUX = φX(U) small enough so that it is contained in a coordinate chart. If in these
coordinatesV = (V µ, V A), then alongφ ◦φ−1

X , the coordinate expressions forVX, V h, V v

are written as

VX = V µ ∂

∂xµ
, V h = V µ ∂

∂xµ
+ V µ ∂(φ ◦ φ−1

X )A

∂xµ

∂

∂yA
,

V v = (V v)A
∂

∂yA
:=
(

V A − V µ ∂(φ ◦ φ−1
X )A

∂xµ

)
∂

∂yA
. (2.15)

Using the Cartan formula we first compute the second term on the right-hand side of (2.5)∫
UX

£VX
L(j2(φ ◦ φ−1

X )) =
∫

UX

£VX
(Lω) =

∫
UX

diVX
(Lω) + iVX

d(Lω)

=
∫

∂UX

LiVX
ω =

∫
∂UX

L V θωθ . (2.16)

Using (2.7), and the local expression for the vertical vector fieldV v, we have that∫
UX

d

dλ

∣∣∣∣
λ=0
L(j2(φλ ◦ (φλ

X)−1))

=
∫

UX

[
∂L

∂yA
(j2(φ ◦ φ−1

X ))(V v)A + ∂L

∂yA
ν

(j2(φ ◦ φ−1
X ))(V v)A,ν

+ ∂L

∂yA
νµ

(j2(φ ◦ φ−1
X ))(V v)A,νµ

]
ω. (2.17)

In the following, we shall useDνf for the formal partial derivative of a functionf (see
(2.3)), and(∂f/∂xν) will denote(∂/∂xν)(f ◦ j2(φ ◦ φ−1

X )). Integrating (2.17) by parts, we
obtain that
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UX

[
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

)]
(V v)Aω

+
∫

UX

(
∂L

∂yA
ν

(V v)A
)

,ν

ω +
∫

UX

(
∂L

∂yA
νµ

(V v)A,ν

)
,µ

ω

−
∫

UX

(
∂

∂xµ

(
∂L

∂yA
νµ

)
(V v)A

)
,ν

ω.

Using the factf,νω = d(f ων), applying the Stoke’s formula
∫
U

dα = ∫
∂U

α, and combining
the last calculation with (2.16), we obtain

dSφ · V =
∫

UX

[
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

)]
(V v)Aω

+
∫

∂UX

(
∂L

∂yA
ν

− ∂

∂xµ

(
∂L

∂yA
νµ

))
(V v)Aων + ∂L

∂yA
νµ

(V v)A,νωµ + L V θωθ .

(2.18)

�

Definition 2.9. A form α onJ kY is contact, if(jkφ)∗α = 0 for all φ ∈ C∞(Y ).

Lemma 2.1. For a smooth Lagrangian densityL : J 2Y → 3n+1(X) there exists a unique
differential form2L ∈ 3n+1(J 3Y ) defined by(2.11)such that the boundary integral in
(2.18)is equal to∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |2L].

Furthermore,2L can be written as a sum ofLω and a linear combination of a system of
contact forms onJ 2Y with coefficients being functions onJ 3Y .

Proof of Lemma 2.1. Let W = (Wµ, WA, WA
µ , WA

µν, W
A
µνθ ) be an arbitrary vector field

onJ 3Y , and letϕ := j3(φ ◦ φ−1
X ), a map fromUX to J 3Y . Then one computes

iW(dyA ∧ ων) = WAων − WθdyA ∧ ωνθ ,

iW(dyA
ν ∧ ωµ) = WA

ν ωµ − WθdyA
ν ∧ ωµθ ,

ϕ∗iW(dyA ∧ ων) = WAων − Wθ ∂(φ ◦ φ−1
X )A

∂xµ
dxµ ∧ ωνθ .

Using the formula

dxµ ∧ ωνθ =



0 if µ 6= ν, θ,

ων if µ = θ,

−ωθ if µ = ν,

(2.19)
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one finds that

ϕ∗iW(dyA ∧ ων) = WAων − Wθ ∂(φ ◦ φ−1
X )A

∂xθ
ων + ∂(φ ◦ φ−1

X )A

∂xν
Wθωθ .

Similarly,

ϕ∗iW(dyA
ν ∧ ωµ) = WA

ν ωµ − Wθ ∂2(φ ◦ φ−1
X )A

∂xθ∂xν
ωµ + ∂2(φ ◦ φ−1

X )A

∂xµ∂xν
Wθωθ .

Thus, if we letW = j3(V ), use (2.9), and recall the local expression (2.15) for(V v)A, we
obtain that

ϕ∗ij3(V )(dyA ∧ ων) = (V v)Aων + ∂(φ ◦ φ−1
X )A

∂xν
V θωθ ,

ϕ∗ij3(V )(dyA
ν ∧ ωµ) = (V v)A,νωµ + ∂2(φ ◦ φ−1

X )A

∂xµ∂xν
V θωθ .

Next, observe thatV θωθ = iV ω. Also,

∂(φ ◦ φ−1
X )A

∂xν
= j3(φ ◦ φ−1

X )∗yA
ν ,

∂2(φ ◦ φ−1
X )A

∂xµ∂xν
= j3(φ ◦ φ−1

X )∗yA
νµ.

These observations together with the previous identities imply the following important
formulas:

j3(φ ◦ φ−1
X )∗[j3(V ) |(dyA

ν ∧ ωµ − yA
νµω)] = (V v)A,νωµ,

j3(φ ◦ φ−1
X )∗[j3(V ) |(dyA ∧ ων − yA

ν ω)] = (V v)Aων.
(2.20)

Substituting these formulas into the boundary integral of the variational principle (2.18),
we obtain that∫

∂UX

(
∂L

∂yA
ν

− ∂

∂xµ

(
∂L

∂yA
νµ

))
(V v)Aων + ∂L

∂yA
νµ

(V v)A,νωµ + L V θωθ

=
∫

∂UX

j3(φ ◦ φ−1
X )∗

{
j3(V ) |

[(
∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

))
(dyA ∧ ων − yA

ν ω)

+ ∂L

∂yA
νµ

(dyA
ν ∧ ωµ − yA

νµω) + Lω

]}

=
∫

∂UX

j3(φ ◦ φ−1
X )∗

{
j3(V ) |

[(
∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

))
dyA ∧ ων

+ ∂L

∂yA
νµ

dyA
ν ∧ ωµ +

(
L − ∂L

∂yA
ν

yA
ν + Dµ

(
∂L

∂yA
νµ

)
yA
ν − ∂L

∂yA
νµ

yA
νµ

)
ω

]}

=
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |2L].

This proves the existence of a unique differential form2L and demonstrates how this form
naturally arises in the boundary integral of the variational principle. Integration by parts
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yields the boundary integral with terms that involve partial derivatives of(V v)A of all orders
up tok−1 (in our casek = 2). Eq. (2.20) shows that each partial derivative of(V v)A has an
associated(n+1)-form onJ 2Y , and substitution of these forms yields a unique differential
(n + 1)-form as desired. SinceL and its partial derivatives are functions onJ 2Y , then by
(2.3),Dµ(∂L/∂yA

νµ) is a function onJ 3Y , and therefore2L is a(n + 1)-form onJ 3Y .
It is easy to show that

jk(φ ◦ φ−1
X )∗(dyA ∧ ων − yA

ν ω) = 0, jk(φ ◦ φ−1
X )∗(dyA

ν ∧ ωµ − yA
νµω) = 0

for all integersk ≥ 2 and for allφ ∈ C. Therefore, dyA ∧ ων − yA
ν ω and dyA

ν ∧ ωµ − yA
νµω

are contact forms onJ 2Y . Hence the last statement of the lemma follows. �

A simple computation then verifies that2L is the Cartan form so that

j3(φ ◦ φ−1
X )∗2L = L ◦ j2(φ ◦ φ−1

X ).

Next, consider the interior integral of the variational principle (2.18). Sincejk(φ◦φ−1
X )∗ijk(V )

(dyA ∧ ω) = (V v)Aω for all integersk ≥ 1, we obtain that∫
UX

[
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

)]
(V v)Aω

=
∫

UX

j4(φ ◦ φ−1
X )∗ij4(V )

[
∂L

∂yA
− Dν

(
∂L

∂yA
ν

)
+ DνDµ

(
∂L

∂yA
νµ

)]
dyA ∧ ω

=
∫

UX

j4(φ ◦ φ−1
X )∗ij4(V )

(
δL

δyA
dyA ∧ ω

)
, (2.21)

whereδL/δyA is the variational derivative ofL in the directionyA (see Definition 2.7).
SinceL is a function of second-order by hypothesis, then its variational derivative is a
function onJ 4Y . Therefore, the form9 ≡ (δL/δyA) dyA ∧ ω is an(n + 2)-form onJ 4Y .
Moreover, the integrand in (2.21) written asj4(φ ◦ φ−1

X )∗((δL/δyA)iV (dyA ∧ ω)) defines
a unique smooth sectionDELL ∈ C∞(C4, T ∗C ⊗ 3n+1(X)) as desired in the statement of
the theorem. Now we shall prove the following lemma.

Lemma 2.2. The forms�L = d2L and 9 = (δL/δyA) dyA ∧ ω satisfy the following
relationship:

j4(φ ◦ φ−1
X )∗ij4(V )9 = j3(φ ◦ φ−1

X )∗ij3(V )�L (2.22)

for all φ ∈ C and all vectorsV ∈ T C.
Furthermore, a necessary condition forφ ∈ C to be an extremum of the action functional
S is that

j3(φ ◦ φ−1
X )∗iW�L = 0 (2.23)

for all vector fields W onJ 3Y , which is equivalent to

j4(φ ◦ φ−1
X )∗iV 9 = 0 (2.24)

for all vector fields V onJ 4Y .
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Proof of Lemma 2.2. The proof will involve some lengthy computations that we partially
present below. To compute�L, let us write2L as

2L=
(

∂L

∂yA
ν

−Dµ

(
∂L

∂yA
νµ

))
(dyA ∧ ων − yA

ν ω) + ∂L

∂yA
νµ

(dyA
ν ∧ ωµ − yA

νµω) + Lω.

Then, forW ∈ TJ3Y , we obtain

iW�L = W

[
∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

)]
(dyA ∧ ων − yA

ν ω)

−d

(
∂L

∂yA
ν

− Dµ

(
∂L

∂yA
νµ

))
∧ (WAων − Wθ dyA ∧ ωνθ − yA

ν Wθωθ )

+W

[
∂L

∂yA
νµ

]
(dyA

ν ∧ ωµ − yA
νµω)

−d

(
∂L

∂yA
νµ

)
∧ (WA

ν ωµ − Wθ dyA
ν ∧ ωµθ − yA

νµWθωθ )

+Dµ

(
∂L

∂yA
νµ

)
(WA

ν ω − Wθ dyA
ν ∧ ωθ) + ∂L

∂yA
(WAω − Wθ dyA ∧ ωθ).

The last step is to pull-backiW�L by ϕ = j3(φ ◦ φ−1
X ); this eliminates the terms with

the contact forms. In addition, using the fact that the pull-back commutes with the exterior
derivative, and applying formulas such as (2.19), we obtain that

ϕ∗iW�L = WA

{
∂L

∂yA
ω − d

(
∂L

∂yA
ν

− ∂

∂xµ

(
∂L

∂yA
νµ

))
∧ ων

}

+Wθ

{
d

(
∂L

∂yA
ν

− ∂

∂xµ

(
∂L

∂yA
νµ

))

∧
(

∂(φ ◦ φ−1
X )A

∂xθ
ων−

∂(φ ◦ φ−1
X )A

∂xν
ωθ + ∂(φ ◦ φ−1

X )A

∂xν
ωθ

)

+d

(
∂L

∂yA
νµ

)
∧
(

∂2(φ ◦ φ−1
X )A

∂xθ∂xν
ωµ − ∂2(φ ◦ φ−1

X )A

∂xµ∂xν
ωθ

+∂2(φ ◦ φ−1
X )A

∂xµ∂xν
ωθ

)
− ∂

∂xµ

(
∂L

∂yA
νµ

)
∂2(φ ◦ φ−1

X )A

∂xθ∂xν
ω

− ∂L

∂yA

∂(φ ◦ φ−1
X )A

∂xθ
ω

}
+ WA

ν

{
∂

∂xµ

(
∂L

∂yA
νµ

)
ω − d

(
∂L

∂yA
νµ

)
∧ ωµ

}
.
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Some cancellation and further rearrangement yields

ϕ∗iW�L = WA

(
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

))
ω

−Wθ ∂(φ ◦ φ−1
X )A

∂xθ

(
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

))
ω.

LettingW = j3(V ), we have that

ϕ∗ij3(V )�L = (V v)A

(
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

))
ω,

where the right-hand side equalsj4(φ ◦ φ−1
X )∗ij4(V )9 by (2.21). Hence, the relation (2.22)

is proved.
A necessary condition forφ ∈ C to be an extremum of the action functionalS is that the

interior integral in (2.18) vanish for all vectorsV ∈ T C. From the calculation above, one
may readily see that it is equivalent to the condition (2.23).

Now if we letV be a vector field onJ 4Y , then

iV 9 = iV

(
δL

δyA
dyA ∧ ω

)
= δL

δyA
iV (dyA ∧ ω)

= δL

δyA
(iV (dyA) ∧ ω − dyA ∧ iV ω) = δL

δyA
(V Aω − V θ dyA ∧ ωθ).

Hence,

j4(φ ◦ φ−1
X )∗iV 9 =

(
∂L

∂yA
− ∂

∂xν

(
∂L

∂yA
ν

)
+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

))

×
(

V A − V θ ∂(φ ◦ φ−1
X )A

∂xθ

)
ω.

Thus, the condition

j4(φ ◦ φ−1
X )∗iV 9 = 0

for all vector fieldsV onJ 4Y is equivalent to the condition (2.23). This completes the proof
of the lemma. �

Lemma 2.2 contains two equivalent conditions forφ ∈ C to be extremal. Both conditions
yield the same coordinate expression of the Euler–Lagrange equations given by

∂L

∂yA
(j2(φ ◦ φ−1

X )) − ∂

∂xν

(
∂L

∂yA
ν

(j2(φ ◦ φ−1
X ))

)

+ ∂2

∂xν∂xµ

(
∂L

∂yA
νµ

(j2(φ ◦ φ−1
X ))

)
= 0,

which is the final statement of the theorem.
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Remark 2.2. As one may see the proof we have presented can be generalized to Lagrangian
densities onJ kY . One has to modify the labeling of variables to reflect the general case.
For example,

(V v)A,µ1···µl
ωθ = ϕ∗[j3(V ) |(dyA

µ1···µl
∧ ωθ − yA

µ1···µlθ
ω)],

where0 ≤ l ≤ (k − 1). Then the Cartan form shall arise in the boundary integral as a
linear combination of the forms above.

We shall call critical pointsφ of S solutions of the Euler–Lagrange equations.

Definition 2.10. We let

P = {φ ∈ C|j3(φ ◦ φ−1
X )∗iW�L = 0 for all vector fieldsW onJ 3Y } (2.25)

denote the space of solutions of the Euler–Lagrange equations.

We are now ready to prove the multisymplectic form formula, a covariant generalization of
the symplectic flow theorem to second-order field theories.1

2.3. Multisymplectic form formula

If φλ is a smooth curve of solutions of the Euler–Lagrange equations inP (when such solu-
tions exist), then differentiating with respect toλ atλ = 0 will give a tangent vectorV to the
curve atφ = φ0. By differentiating(d/dλ)|λ=0 j3(φλ ◦ (φλ

X)−1)∗[W |�L] = 0, we obtain

j3(φ ◦ φ−1
X )∗£j3(V )[W |�L] = 0

for all vector fieldsW on J 3Y . Therefore, ifP is a submanifold ofC, then for anyφ ∈ P
we may identifyTφP with the set of vectorsV that satisfy the above condition. However,
we do not requireP to be a submanifold.

Definition 2.11. For anyφ ∈ P,

F = {V ∈ TφC|j3(φ ◦ φ−1
X )∗£j3(V )[W |�L] = 0 for all vector fieldsV onJ 3Y }

(2.26)

defines a set of solutions of the first variation equations of the Euler–Lagrange equations.

Theorem 2.2(Multisymplectic form formula).If φ ∈ P, then for all V and W inF ,∫
∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |j3(W) |�L] = 0. (2.27)

Proof. We follow Theorem 4.1 in [12]. Define the 1-formsα1 andα2 onC by

α1(φ) · V :=
∫

UX

j3(φ ◦ φ−1
X )∗[j3(V ) |�L],

1 For first-order field theories, this is Theorem 4.1 in [12].
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and

α2(φ) · V :=
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |2L],

so that by (2.12) and (2.13),

dSφ · V = α1(φ) · V + α2(φ) · V ∀V ∈ TφC. (2.28)

Furthermore,

d2S(φ)(V, W) = dα1(φ)(V, W) + dα2(φ)(V, W) ∀V, W ∈ TφC.

Since d2S = 0, we have that

dα1(φ)(V, W) + dα2(φ)(V, W) = 0 ∀V, W ∈ TφC. (2.29)

Given vectorsV, W ∈ TφC we may extend them to vector fieldsV,W onC by fixing vector
fields v, w on Y such thatV = v ◦ φ andW = w ◦ φ, and lettingV(ρ) = v ◦ ρ and
W(ρ) = w ◦ ρ. If ηλ

Y coveringηλ
X is the flow ofv, then8(ηλ

Y , ρ) is the flow ofV. Notice
thatV(φ) = V andW(φ) = W , hence Eq. (2.29) becomes

dα1(V,W)(φ) + dα2(V,W)(φ) = 0.

Recall that for any 1-formα onC and vector fieldsV,W onC,

dα(V,W) = V[α(W)] −W[α(V)] − α([V,W]). (2.30)

Also recall that for a vector fieldV on C and a functionf on C, V[f ] = df · V. We now
use the latter and (2.30) onα2. We have that

dα2(V,W)(φ) = V[α2(W)](φ) −W[α2(V)](φ) − α2([V,W])(φ)

= [d(α2(W)) · V](φ) − [d(α2(V)) ·W](φ) − α2(φ) · [V, W ]

= d(α2(W))(φ) · V − d(α2(V))(φ) · W − α2(φ) · [V, W ]. (2.31)

Similarly,

dα1(φ)(V, W) = d(α1(W))(φ) · V − d(α1(V))(φ) · W − α1(φ) · [V, W ]. (2.32)

Let φ ∈ P andφλ = ηλ
Y ◦ φ be a curve inC throughφ such that

V = d

dλ

∣∣∣∣
λ=0

φλ, V ∈ F .

Now we restrictV, W to F . We shall give a detailed computation of the first term on the
right-hand side of (2.31). We have that
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d(α2(W))(φ) · V = d

dλ

∣∣∣∣
λ=0

(α2(W))(φλ) = d

dλ

∣∣∣∣
λ=0

α2(φ
λ) · (w ◦ φλ)

= d

dλ

∣∣∣∣
λ=0

∫
∂(ηλ

X(UX))

j3(φλ ◦ (φλ
X)−1)∗[j3(w ◦ φλ) |2L]

= d

dλ

∣∣∣∣
λ=0

∫
∂UX

j3(φ ◦ φ−1
X )∗j3(ηλ

Y )∗[j3(W) |2L]

=
∫

∂UX

j3(φ ◦ φ−1
X )∗£j3(V )(j

3(W) |2L)

=
∫

∂UX

j3(φ ◦ φ−1
X )∗ d[j3(V ) |j3(W) |2L]

+
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |d(j3(W) |2L)],

where the last equality was obtained using Cartan’s formula. We have also used the fact
thatWλ = w ◦ φλ andW = w ◦ φ have the samekth prolongation. Furthermore, using
Stoke’s theorem, noting that∂∂UX is empty, and applying Cartan’s formula once again to
d(j3(W) |2L), we obtain that

d(α2(W))(φ) · V =
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |£j3(W)2L]

−
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |j3(W) |�L]. (2.33)

Similarly,

d(α2(V))(φ) · W =
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(W) |£j3(V )2L]

−
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(W) |j3(V ) |�L]. (2.34)

Now, j3([V, W ]) = [j3(V ), j3(W)]; hence,

α2(φ) · [V, W ] =
∫

∂UX

j3(φ ◦ φ−1
X )∗([j3(V ), j3(W)] |2L).

Recall that for a differential formα on a manifoldM and for vector fieldsX, Y onM,

i[X,Y ]α = £X iY α − iY £Xα.

Therefore,

α2(φ) · [V, W ] =
∫

∂UX

j3(φ ◦ φ−1
X )∗[£j3(V )(j

3(W) |2L) − j3(W) |£j3(V )2L]

=
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(V ) |£j3(W)2L − j3(V ) |j3(W) |�L

−j3(W) |£j3(V )2L], (2.35)
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where we have again used Stoke’s theorem and Cartan’s formula twice. Substituting
(2.33)–(2.35) into (2.31), we obtain that

dα2(φ)(V, W) =
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(W) |j3(V ) |�L]. (2.36)

We now compute (2.32). Similar computations as above yield

d(α1(W))(φ) · V =
∫

UX

j3(φ ◦ φ−1
X )∗£j3(V )(j

3(W) |�L),

which vanishes for allφ ∈ P andV ∈ F . Similarly, d(α1(V))(φ) · W = 0 for all φ ∈ P
andW ∈ F . Finally,α1(φ) = 0 for all φ ∈ P. Therefore, Eq. (2.32) vanishes for allφ ∈ P
andV, W ∈ F . Using the latter and (2.36), Eq. (2.29) becomes∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(W) |j3(V ) |�L] = 0

for all φ ∈ P and allV, W ∈ F , as desired. �

2.4. Noether’s theorem

Suppose thatS is invariant under the action8(g, φ) of a Lie groupG onC. This implies
that for eachg ∈ G, 8(g, φ) ∈ P wheneverφ ∈ P. We restrict the action to elements of
P. For each elementξ of the Lie algebrag of G, let ξC be the corresponding infinitesimal
generator onC restricted to elements ofP. By the invariance ofS,

S(8(exp(tξ), φ)) = S(φ) ∀t.

Differentiating with respect tot at t = 0, and using the fundamental property of the Cartan
form thatL ◦ j2(φ ◦ φ−1

X ) = j3(φ ◦ φ−1
X )∗2L, we find that∫

UX

j3(φ ◦ φ−1
X )∗£j3(ξC(φ))2L = 0.

Then by Theorem 2.1 and the invariance ofS we have that

0 = (ξC |dS)(φ) =
∫

∂UX

j3(φ ◦ φ−1
X )∗[j3(ξC(φ)) |2L]

= −
∫

UX

j3(φ ◦ φ−1
X )∗[j3(ξC(φ)) |�L]. (2.37)

Definition 2.12. Let J ∈ Hom(g, T ∗C ⊗ 3n(J 3Y )) satisfy

j3(ξC(φ)) |�L = d[J (ξ)(φ)] (2.38)

for all ξ ∈ g andφ ∈ C. Then the mapJ : C → g∗ defined by

〈J(φ), ξ〉 = J (ξ)(φ) ∀ξ ∈ g, φ ∈ C, (2.39)

is thecovariant momentum map of the action.
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With this definition, (2.37) becomes
∫
UX

d[j3(φ ◦ φ−1
X )∗〈J(φ), ξ〉] = 0, and since this

holds for anyUX ⊂ X, the integrand must also vanish; thus,

d[j3(φ ◦ φ−1
X )∗〈J(φ), ξ〉] = 0. (2.40)

On the other hand, by Stoke’s theorem we may also conclude that∫
∂UX

j3(φ ◦ φ−1
X )∗〈J(φ), ξ〉 = 0. (2.41)

Last two statements are equivalent, and we refer to them as the covariant Noether’s theorem.

3. A multisymplectic approach to the CH equation

3.1. CH equation

The completely integrable bi-Hamiltonian CH equation (see [2,4])

ut − uyyt = −3uuy + 2uyuyy + uuyyy (3.1)

is a model for breaking shallow water waves that admits peaked solitary traveling waves
as solutions (see [2,3]). Such solutions, termedpeakons, develop from any initial data with
sufficiently negative slope, and because of the discontinuities in the first derivative, these so-
lutions are difficult to numerically simulate, particularly in the case of apeakon–antipeakon
collision (see [3]).

The multisymplectic framework for the CH equation is intended to provide a foundation
for numerical discretization schemes that preserve the Hamiltonian structure of this model,
even at the discrete level. After developing the multisymplectic framework for (3.1), we
shall follow [12] and develop the entire discrete multisymplectic approach to second-order
field theories, concentrating on the discrete CH equation as our model problem. Although
we shall only produce the simplestmultisymplectic-momentumconserving algorithm for
this equation, our construction is completely general and will allow for the creation of
kth-order accurate schemes for arbitrarily largek.

The CH equation (3.1) is usually expressed in terms of the Eulerian, or spatial velocity
field u(t, y), and is the Euler–Poincaré equation for the reduced Lagrangian

l(u) = 1

2

∫
(u2 + u2

y) dy. (3.2)

Alternatively, one may express (3.1) in terms of the Lagrangian variableη(t, x) arising from
the solution of

∂

∂t
η(x, t) = u(t, η(x, t)). (3.3)

The Lagrangian approach to the CH equation is ideally suited to the multisymplectic varia-
tional theory, and we begin by specifying our fiber bundleπXY : Y → X. LetX = S1 ×R,
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andY = S1 × R × R. We coordinatizeX by (x1, x0) (or (x, t)) andY by (x1, x0, y)

(or (x, t, y)). A smooth sectionφ ∈ C∞(Y ) represents a physical field and is expressed
in local coordinates by(x, t, η(x, t)), whereη is the Lagrangian flow solving (3.3). The
material or Lagrangian velocity(∂/∂t)η(x, t) is an element ofTφ(x,t)Y = T(x,t,y)Y , where
y = η(x, t).

Using (3.3) together withuy = ηtx/ηx , the Lagrangian representation for the action may
be expressed as

S(φ) = 1

2

∫
X

(ηxη
2
t + η−1

x η2
tx) dx dt. (3.4)

The second jet bundleJ 2Y is a nine-dimensional manifold and two-holonomic sections of
J 2Y → X have local coordinates

j2(φ) = (x, t, η(x, t), ηx(x, t), ηt (x, t), ηxx(x, t), ηxt(x, t), ηtx(x, t), ηtt(x, t)),

where for smooth sectionsηxt(x, t) = ηtx(x, t). The Lagrangian densityL : J 2Y → 32(X)

is expressed as

L(x1, x0, y, y1, y0, y11, y10, y01, y00)

= L(x1, x0, y, y1, y0, y11, y10, y01, y00) dx1 ∧ dx0.

For the CH equation the Lagrangian density evaluated along the second jet of a sectionφ

is given by

L(j2(φ)) = [ 1
2(ηxη

2
t + η−1

x η2
tx)] dx ∧ dt. (3.5)

As our Lagrangian (3.5) depends only ony1, y0, andy01, the Euler–Lagrange equation
(2.14) simply becomes

− ∂

∂x

(
∂L

∂ηx

)
− ∂

∂t

(
∂L

∂ηt

)
+ ∂2

∂t∂x

(
∂L

∂ηtx

)
= 0, (3.6)

so that we have the Lagrangian version of the CH equation (3.1) given by

1

2

((
ηtx

ηx

)2

− η2
t

)
x

− (ηxηt )t +
(

ηtx

ηx

)
xt

= 0. (3.7)

By differentiatingu = (∂/∂t)η ◦ η−1 three times, one may verify that (3.7) is indeed
equivalent to (3.1).

Now, using (2.11) we have that the Cartan form2L is given by

2L = ∂L

∂ηx

dη ∧ dt −
(

∂L

∂ηt

− Dx

(
∂L

∂ηtx

))
dη ∧ dx + ∂L

∂ηtx
dηt ∧ dt

+
(

L − ∂L

∂ηx

ηx − ∂L

∂ηt

ηt − ∂L

∂ηtx
ηtx + Dx

(
∂L

∂ηtx

)
ηt

)
dx ∧ dt, (3.8)
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or

2L = ∂L

∂ηx

(dη ∧ dt − ηx dx ∧ dt) +
(

∂L

∂ηt

− Dx

(
∂L

∂ηtx

))
(−dη ∧ dx − ηt dx ∧ dt)

+ ∂L

∂ηtx
(dηt ∧ dt − ηtx dx ∧ dt) + L dx ∧ dt, (3.9)

if written in terms of the system of contact forms.

3.2. Multisymplectic form formula for the CH equation

Marsden et al. [12] in their paper have demonstrated how the multisymplectic form for-
mula for first-order field theories when applied to nonlinear wave equations generalizes
the notion of symplecticity given by Bridges in [1]. Using the example of the CH equa-
tion, we present below a simple interpretation of the multisymplectic form formula for the
second-order field theories. We show that the MFF formula is an intrinsic generalization of
the conservation law analogous to the one in Appendix D of [1].

Bridges has introduced the notion of a Hamiltonian system on a multisymplectic struc-
ture. A multisymplectic structure(M, ω1, . . . , ωn, ω0) consists of a manifoldM, the phase
space, and a family of pre-symplectic forms. The phase spaceM is a manifold modeled on
Rn+1. A Hamiltonian system on a multisymplectic structure is then represented symboli-
cally by (M, ω1, . . . , ωn, ω0, H) with the governing equation

ω1
(

∂Z

∂x1
, v

)
+ · · · + ωn

(
∂Z

∂xn
, v

)
+ ω0

(
∂Z

∂t
, v

)
= 〈∇H(Z), v〉 (3.10)

for all vector fieldsv onMwhere〈·, ·〉 is an inner product onTM andZ(x1, . . . , xn, t) is a
curve inM. Bridges has shown that this formulation is natural for studying wave propagation
in open systems. Bridges, in particular, has obtained the following conservation law in the
case of the wave equation [1]:

∂

∂t
ω0(Zt , Zx) + ∂

∂x
ω1(Zt , Zx) = 0. (3.11)

This law generalizes the notion of symplecticity of classical mechanics.
Let us make an appropriate choice of the phase spaceM for the CH equation. Our choice

is entirely governed by the coefficients in the Cartan form (3.8). Since the Lagrangian (3.5)
does not explicitly depend on time and space variables, i.e., the system is autonomous, we
identify sectionsφ of Y with mappingsη(x, t) from R2 into R, and similarly, sections of
J 3Y with mappings fromR2 into R15. The Cartan form (3.8) suggests to introduce the
following momenta:

px= ∂L

∂ηx

, pt = ∂L

∂ηt

− Dx

(
∂L

∂ηtx

)
, ptx = ∂L

∂ηtx
, pxx = ptt = pxt = 0. (3.12)

Since2L is horizontal overJ 1Y , the covariant configuration bundle is reallyJ 1Y → X, and
one should think of(η, ηx, ηt ) as field variables with each field variable having conjugate
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multi-momenta. For example,px, pt function as conjugate spatial and temporal momenta
for the field componentη. Then the transformation

(η, ηx, ηt , ηxx, ηxt, ηtx, ηtt, . . . ) 7→ (η, ηx, ηt , p
x, pt , ptx)

defines a mapping from the space of vertical sections ofJ 3Y → X into the phase space
M = R6 modeled overX = R2. We denote this transformation byFL. Let us now state
the result that connects our paper to Bridges’ theory.

Proposition 3.1. The multisymplectic form formula (MFF) yields a multisymplectic struc-
ture (M, ω1, ω0) such that the MFF formula becomes an intrinsic generalization of the
following conservation law: for any V, W inF that areπXY-vertical,

∂

∂x
ω1(T FL · j3(V ), T FL · j3(W)) + ∂

∂t
ω0(T FL · j3(V ), T FL · j3(W)) = 0.

(3.13)

Moreover, the CH equation in both Eulerian form(3.1)and Lagrangian form(3.7) is equiv-
alent to the Hamiltonian system of equations on the multisymplectic structure with the
Hamiltonian defined by

H = L − pxηx − ptηt − ptxηtx. (3.14)

Proof. Consider twoπXY-vertical vectorsV andW in F . ThenT FL · j3(V ) andT FL ·
j3(W) are vertical-over-X vector fields onX ×M → X, whose components we shall
denote via

(V η, V ηx , V ηt , V px

, V pt

, V ptx
),

or just numerate by(V 1, V 2, V 3, V 4, V 5, V 6). Thinking of the components of the trans-
formationFL as functions onJ 3Y , we immediately see that

V px = dpx · j3(V ) ≡ j3(V )[px ],

V pt = dpt · j3(V ) ≡ j3(V )[pt ],

V ptx = dptx · j3(V ) ≡ j3(V )[ptx].

(3.15)

Using expressions (3.12) we express�L as

�L = dpx ∧ dη ∧ dt − dpt ∧ dη ∧ dx + dptx ∧ dηt ∧ dt

−ηx dpx ∧ dx ∧ dt − ηt dpt ∧ dx ∧ dt − ηtx dptx ∧ dx ∧ dt.

Next, combining with (3.15) we obtain that

j3(W) |j3(V ) |�L = {V px

Wη − Wpx

V η + V ptx
Wηt − Wptx

V ηt } dt

−{V pt

Wη − Wpt

V η} dx,
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so that∫
∂UX

j3(φ ◦ φ−1
X )∗[j3(W) |j3(V ) |�L]

=
∫

∂UX

(V 4W1 − W4V 1 + V 6W3 − W6V 3) dt

−(V 5W1 − W5V 1) dx. (3.16)

The integral on the right-hand side of the above equation leads us to introduce two degenerate
skew-symmetric matricesB1, B0 onR6:

B1 =




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

−1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0




, B0 =




0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 0




.

To each matrixBν , we associate the 2-formων onR6 given byων(u, v) = 〈Bνu, v〉 ≡
vTBνu, whereu, v ∈ R6. With the definition ofων and the use of (3.16), the multisymplectic
form formula (2.27) becomes, forUX ⊂ X,∫

∂UX

ω1(T FL · j3(V ), T FL · j3(W)) dt − ω0(T FL · j3(V ), T FL · j3(W)) = 0.

Hence by the Stoke’s theorem,∫
∂UX

[
∂

∂x
ω1(T FL · j3(V ), T FL · j3(W))

+ ∂

∂t
ω0(T FL · j3(V ), T FL · j3(W))

]
dx ∧ dt = 0.

SinceUX is arbitrary, we obtain the desired conservation law (3.13).
In the special case, when the componentsV η = ηx andWη = ηt , one may verify that

T FL · j3(V ) = (η, ηx, ηt , p
x, pt , ptx),x,

T FL · j3(W) = (η, ηx, ηt , p
x, pt , ptx),t ,

so that, lettingZ denote an element(η, ηx, ηt , p
x, pt , ptx) ∈M, the formula (3.11) takes

the special form

∂

∂x
ω1(Zt , Zx) + ∂

∂t
ω0(Zt , Zx) = 0,

which is the complete analog of Bridges’ conservation law (3.11) for the wave equation.
Next, since the inner product〈·, ·〉 is independent ofZ ∈M, the Hamiltonian system of

equations (3.10) on the multisymplectic structure(M, ω1, ω0) may be written as

Zx |ω1 + Zt |ω0 = ∇H, B1Zx + B0Zt = ∇H,
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which results in

∂

∂x
px + ∂

∂t
pt = ∂H

∂η
,

∂

∂x
ptx = ∂H

∂ηt

,
∂

∂x
η = − ∂H

∂px
,

∂

∂t
η = −∂H

∂pt
,

∂

∂x
ηt = − ∂H

∂ptx
.

With the choice of the Hamiltonian (3.14) the last four equations yield identities, and the
first equation becomes

∂

∂x
px + ∂

∂t
pt = 0.

Using the Legendre transformation expressions (3.12) forpx, pt , the latter equation recovers
the Euler–Lagrange equation (3.6), and hence (3.7). In other words, the Euler–Lagrange
equations onJ 3Y are equivalent to Hamilton’s equations on the multisymplectic structure
(M, ω1, ω0, H). �

4. Discrete second-order multisymplectic field theory

4.1. A general construction

We shall now generalize the Veselov-type discretization of first-order field theory given
in [12] to second-order field theories, using the CH equation as our example. We discretize
X byZ×Z = {(i, j)} and the fiber bundleY by X ×R. Elements ofY over the base point
(i, j) are written asyij and the projectionπXY acts onY by πXY(yij ) = (i, j). The fiber over
(i, j) ∈ X is denoted byYij .

For the general case of a second-order Lagrangian one must define the discrete second jet
bundle ofY , and this discretization depends on how one chooses to approximate the partial
derivatives of the field. For example, using central differencing and a fixed time stepk and
space steph, we have that

ηx ≈ yi+1j − yi−1j

2h
, ηt ≈ yij+1 − yij−1

2k
, ηxx ≈ yi−1j − 2yij + yi+1j

h2
,

ηtx ≈ yi+1j+1 − yi+1j−1 + yi−1j−1 − yi−1j+1

4hk
, ηtt ≈ yij−1 − 2yij + yij+1

k2
,

(4.1)

whereyij = η(xi, tj ) and{(xi, tj )} form a uniform grid in continuous space–time (Fig. 1).
We observe that a 9-tuple

(yi−1j−1, yi−1j , yi−1j+1, yij−1, yij , yij+1, yi+1j−1, yi+1j , yi+1j+1)

is sufficient to approximatej2φ(P ), whereP is in the center of the cell

�ij ≡ ((i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1),

(i, j), (i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)).

Let X� denote the set of cells, i.e.,X� = {�ij |(i, j) ∈ X}. Components of a cell are called
vertices, and are numbered from first to ninth. A point(i, j) ∈ X is touchedby a cell if it
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Fig. 1. Equivalent computational grid in the physical domain.

is a vertex of that cell. IfU ⊆ V , then(i, j) ∈ X is an interior point of U if U contains
all cells touching(i, j). The interior int U of U is the set of all interior points ofU . The
closurecl U of U is the union of all cells touching interior points ofU . A boundary point
of U is a point inU and clU which is not an interior point. Theboundaryof U is the set
of boundary points, so that∂U ≡ (U ∩ cl U) \ int U .

A sectionof the configuration bundleY → X is a mapφ : U ⊆ X → Y such that
πXY ◦ φ = idU . We are now ready to define the discrete multisymplectic phase space.

Definition 4.1. The discretesecond jet bundleof Y is given by

J 2Y ≡ {(yi−1j−1, yi−1j , yi−1j+1, yij−1, yij , yij+1, yi+1j−1, yi+1j , yi+1j+1)|(i, j)

∈ X, yi−1j−1, . . . , yi+1j+1 ∈ R} ≡ X� × R9.

The fiber over(i, j) ∈ X is denotedJ 2Yij . We define thesecond jet extensionof a section
φ to be the mapj2φ : X → J 2Y given by

j2φ(i, j) ≡ (�ij , φ(i − 1, j − 1), φ(i − 1, j), φ(i − 1, j + 1), φ(i, j − 1), φ(i, j),

φ(i, j + 1), φ(i + 1, j − 1), φ(i + 1, j), φ(i + 1, j + 1)).

Given a vector fieldv on Y the second jet extensionof v is the vector fieldj2v on J 2Y

defined by

j2v(yi−1j−1, . . . , yi+1j+1) ≡ (v(yi−1j−1), v(yi−1j ), v(yi−1j+1), v(yij−1), v(yij ),

v(yij+1), v(yi+1j−1), v(yi+1j ), v(yi+1j+1)).

Of course, this may easily be generalized to more accurate differencing schemes that require
more than nine grid points to define second partial derivatives.

4.2. A multisymplectic-momentum algorithm for the CH equation

Restricting our attention to the CH equation and noting that its Lagrangian depends only
onηx, ηt , ηtx, we may significantly simplify our discretization of the second jet bundleJ 2Y ;
this will substantially reduce our calculations and simplify the exposition.
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Fig. 2. The rectangles which touch(i, j).

To approximatej2φ(P ) we choose the forward difference evaluations ofηx, ηt , ηtx:

ηx ≈ yi+1j − yij

h
, ηt ≈ yij+1 − yij

k
, ηtx ≈ yi+1j+1 − yi+1j − yij+1 + yij

hk
.

For this particular choice, our cell reduces to a rectangle. Arectangleh of X is an ordered
4-tuple of the form

hij = ((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)).

For each rectangle,h1, h2, h3, andh4 stand for the first, second, third, and fourth vertices,
respectively. If(i, j) is the first vertex, we shall denote the rectangle byhij . The set of all
rectangles inX is denoted byXh. The set-theoretical definitions of Section 4.1 apply
here. For example, a pointP = (i, j) ∈ X is touched(see Fig. 2) by four rectangles
hij , hi−1j , hi−1j−1, hij−1, etc.

Again as (3.5) does not depend onηxx, ηtt, we may restrict ourselves to a subbundleB̃ of
the continuousJ 2Y defined viaB̃ ≡ {s ∈ J 2Y |sµµ = 0 for µ = 1, 0}. Then the discrete
analogB (see Fig. 3) ofB̃ is identified with

B̃ ≡ {(yij , yi+1j , yi+1j+1, yij+1)|(i, j) ∈ X, yij , yi+1j , yi+1j+1, yij+1 ∈ R}
≡ Xh × R4.

Fig. 3. Interpretation of an element ofJ 2Y whenX is discrete.
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For a sectionφ : U ⊆ X → Y , we define thesecond jet extensionof φ to B to be the map
j2φ : U ⊆ X → B via

j2φ(i, j) = (hij , φ(h1), φ(h2), φ(h3), φ(h4)).

Given a vector fieldv onY we extend it to a vector fieldj2v onB by

j2v(yij , yi+1j , yi+1j+1, yij+1) = (v(yij ), v(yi+1j ), v(yi+1j+1), v(yij+1)).

A discrete LagrangianonB is then a functionL : B→ Rof five variableshij , y1, y2, y3, y4,
where they-variables are labeled in the order they appear in a 4-tuple. LetU be aregular
subset ofX, i.e.,U is exactly the union of its interior and boundary. LetCU denote the set
of sections ofY onU , soCU is the manifoldR|U |.

Definition 4.2. Thediscrete actionis a real valued function onCU defined by the rule

S(φ) ≡
∑

h⊆U ;(i,j)=h1

L ◦ j2φ(i, j). (4.2)

Given a sectionφ on U acting asφ(i, j) = yij , one can define an elementV ∈ TφCU to
be a mapV : U → TYacting asV (i, j) = (φ(i, j), vij ), wherevij is thought as a vector
emanating fromyij = φ(i, j). Given an elementV ∈ TφCU one can always extend it to a
vector fieldv onY . On the other hand, given a vector fieldv onY, V ≡ v ◦ φ is an element
of TφCU . Thus, it is sufficient to work with vector fieldsv onY alone.

If v is a vector field onY , consider its restrictionv|Yij to the fiberYij . Let Fv
λ : Yij → Yij

be the flow ofv|Yij . Then by definition of the flow,

v(φ(i, j)) = d

dλ

∣∣∣∣
λ=0

Fv
λ (φ(i, j)).

Therefore, there is the 1-parameter family of sections onU defined byφλ ≡ Fv
λ ◦ φ such

thatφ0 = φ and(d/dλ)|λ=0 φλ = v ◦ φ = V . Thus, thevariational principle is to seek
those sectionsφ for which

d

dλ

∣∣∣∣
λ=0
S(F v

λ ◦ φ) = 0 (4.3)

for all vector fieldsv onY .

4.3. Discrete Euler–Lagrange equations

With our choice ofB, the discrete Lagrangian for the CH equation is

L(y1, y2, y3, y4) = 1

2

(
y2 − y1

h

(y4 − y1)
2

k2
+ h

y2 − y1

(y3 − y2 − y4 + y1)
2

h2k2

)
. (4.4)

The variational principle yields thediscrete Euler–Lagrange field equations(DEL equa-
tions) as follows. Choose an arbitrary point(i, j) ∈ U . Henceforth, with a slight abuse
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of notation, we shall writeyij for φ(i, j). The action (4.2), written with its summands
containingyij explicitly, is (see Figs. 2, 3)

S = · · · +L(yij , yi+1j , yi+1j+1, yij+1) + L(yi−1j , yij , yij+1, yi−1j+1)

+L(yi−1j−1, yij−1, yij , yi−1j ) + L(yij−1, yi+1j−1, yi+1j , yij ) + · · · .

Differentiating with respect toyij yields the DEL equations:

∂L

∂y1
(yij , yi+1j , yi+1j+1, yij+1)

+ ∂L

∂y2
(yi−1j , yij , yij+1, yi−1j+1)

+ ∂L

∂y3
(yi−1j−1, yij−1, yij , yi−1j ) + ∂L

∂y4
(yij−1, yi+1j−1, yi+1j , yij ) = 0

for all (i, j) ∈ int U . Equivalently, these equations may be written as∑
l;h;(i,j)=hl

∂L

∂yl

(φ(h1), φ(h2), φ(h3), φ(h4)) = 0 (4.5)

for all (i, j) ∈ int U . Computing and evaluating∂L/∂yi along rectangles touching an
interior point (i, j), and substituting these expressions into (4.5), we obtain the discrete
Euler–Lagrange equations for the CH equation:

(4kyi+1j − 4kyij )
2

2hk2(4hyij )2
− (4kyij − 4kyi−1j )

2

2hk2(4hyi−1j )2
− (4kyij )

2

2hk2

+ (4kyi−1j )
2

2hk2
+ (4kyi+1j − 4kyij )

hk2(4hyij )
− (4kyij − 4kyi−1j )

hk2(4hyi−1j )

− (4kyi+1j−1 − 4kyij−1)

hk2(4hyij−1)
+ (4kyij−1 − 4kyi−1j−1)

hk2(4hyi−1j−1)

− (4hyij )(4kyij )

hk2
+ (4hyij−1)(4kyij−1)

hk2
= 0, (4.6)

where

4kyij = yij+1 − yij , 4kyi−1j = yi−1j+1 − yi−1j ,

4hyij = yi+1j − yij , 4kyi+1j = yi+1j+1 − yi+1j .

To see that (4.6) is indeed approximating the continuous Euler–Lagrange equation (3.7),
notice that the first two terms combine to approximate

1

2

((
ηtx

ηx

)2
)

x

≈ 1

2

1

h

[
((4kyi+1j − 4kyij )/hk)2

(4hyij/h)2
− ((4kyij − 4kyi−1j )/hk)2

(4hyi−1j /h)2

]
.

As to the third and fourth terms of (4.6),

−1

2
(η2

t )x ≈ −1

2

1

h

[(4kyij

k

)2

−
(4kyi−1j

k

)2
]

.
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Next, the fifth, sixth, seventh, and eighth terms combine as(
ηtx

ηx

)
tx

≈ 1

hk

[(
((4kyi+1j − 4kyij )/hk)

(4hyij/h)

)
−
(

((4kyij − 4kyi−1j )/hk)

(4hyi−1j /h)

)

−
(

((4kyi+1j−1 − 4kyij−1)/hk)

(4hyij−1/h)

)
+
(

((4kyij−1 − 4kyi−1j−1)/hk)

(4hyi−1j−1/h)

)]
.

Finally, the last two terms of (4.6) approximate

−(ηxηt )t ≈ −1

k

(4hyij

h

4kyij

k
− 4hyij−1

h

4kyij−1

k

)
.

The numerical scheme (4.6) proceeds as follows: suppose that

4hyij , 4hyi−1j , 4hyi−1j−1, 4hyij−1, 4kyij−1, 4kyi−1j−1, 4kyi+1j−1

as known from the two previous time steps; then (4.6) may be written as

F(4kyij , 4kyi+1j , 4kyi−1j ) = 0.

These are implicit equations which must be solved foryij+1, 1 ≤ i ≤ N , whereN is the
size of the spatial grid.

4.4. Discrete Cartan form

We consider arbitrary variations which are in no way constrained on the boundary∂U .
For each(i, j) ∈ ∂U there is at least one rectangle inU touching(i, j) since(i, j) ∈ cl U
andU is regular. On the other hand, not all four rectangles touching(i, j) are inU since
(i, j) /∈ int U . Therefore, each(i, j) ∈ ∂U occurs as thelth vertex for either one, two, or
three of thel ∈ 1, 2, 3, 4 and the correspondinglth boundary expressions are given by

∂L

∂y1
(yij , yi+1j , yi+1j+1, yij+1)V (i, j),

∂L

∂y2
(yi−1j , yij , yij+1, yi−1j+1)V (i, j),

∂L

∂y3
(yi−1j−1, yij−1, yij , yi−1j )V (i, j),

∂L

∂y4
(yij−1, yi+1j−1, yi+1j , yij )V (i, j),

(4.7)

whereyij = φ(i, j). The sum of all such terms is the contribution to dS from the boundary
∂U . We thus define the four 1-forms onB ⊆ J 2Y by

21
L(yij , yi+1j , yi+1j+1, yij+1) · (vyij , vyi+1j

, vyi+1j+1, vyij+1)

≡ ∂L

∂y1
(yij , yi+1j , yi+1j+1, yij+1) · (vyij , 0, 0, 0),

22
L(yij , yi+1j , yi+1j+1, yij+1) · (vyij , vyi+1j

, vyi+1j+1, vyij+1)

≡ ∂L

∂y2
(yij , yi+1j , yi+1j+1, yij+1) · (0, vyi+1j

, 0, 0),
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23
L(yij , yi+1j , yi+1j+1, yij+1) · (vyij , vyi+1j

, vyi+1j+1, vyij+1)

≡ ∂L

∂y3
(yij , yi+1j , yi+1j+1, yij+1) · (0, 0, vyi+1j+1, 0),

24
L(yij , yi+1j , yi+1j+1, yij+1) · (vyij , vyi+1j

, vyi+1j+1, vyij+1)

≡ ∂L

∂y4
(yij , yi+1j , yi+1j+1, yij+1) · (0, 0, 0, vyij+1).

We regard the 4-tuple(21
L, 22

L, 23
L, 24

L)as being the discrete analog of the multisymplectic
form 2L. Given a vector fieldv onY such thatV = v ◦ φ, the first expression from the list
(4.7) becomes [(j2φ)∗(j2v |21

L)](i, j), the others written similarly. With this notation, dS
may be expressed as

dS(φ) · V =
∑

(i,j)∈int U


 ∑

h⊆U ;l;(i,j)=hl

[(j2φ)∗(j2v |2l
L)](h1)




+
∑

(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

[(j2φ)∗(j2v |2l
L)](h1)


 . (4.8)

4.5. Discrete multisymplectic form formula

For a rectangleh in X, define the projectionπh : CU → B by

πh(φ) ≡ (h, φ(h1), φ(h2), φ(h3), φ(h4)).

Calculating the formπ∗
h

2l
L onCU gives

(π∗
h2l

L)(φ) · V = ∂L

∂yl

(φ(h1), φ(h2), φ(h3), φ(h4))V (hl ).

This immediately implies that the variation (4.8) can be written as

dS(φ) · V =
∑

(i,j)∈int U


 ∑

h⊆U ;l;(i,j)=hl

(π∗
h2l

L)(φ) · V




+
∑

(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

(π∗
h2l

L)(φ) · V


 . (4.9)

Define the 1-formsα1 andα2 on the space of sectionsCU to be the first and the second
terms on the right-hand side of (4.9), respectively.

As in Section 4.4 we would like to derive the discrete analog of symplecticity of the flow
in mechanics. Letφλ be a curve of solutions of (4.5) that passes throughφ at zero with
V = (d/dλ)|λ=0φ

λ. Then for each interior point(i, j) and eachλ, the following holds:
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∑
l;h;(i,j)=hl

∂L

∂yl

(φλ(h1), φλ(h2), φλ(h3), φλ(h4)) = 0.

Differentiating these equations with respect toλ atλ = 0, we obtain the following definition.

Definition 4.3. If φ is a solution of the discrete Euler–Lagrange equations (4.5), then a
first-variationequation solution atφ is a vectorV ∈ TφCU such that for each(i, j) ∈ int U ,

∑
l;h;(i,j)=hl

4∑
k=1

∂2L

∂yk∂yl

(φ(h1), φ(h2), φ(h3), φ(h4))V (hk) = 0. (4.10)

By definition of the formsα1 andα2, dS = α1+α2. Since d2S = 0, dα1+dα2 = 0. Using
(4.9) and denoting the vertices ofh by y1, y2, y3, y4, we have that2l

L = (∂L/∂yl) dyl ,
which implies that for alll = 1, 2, 3, 4,

�l
L =

4∑
k=1

∂2L

∂yk∂yl

dyk ∧ dyl.

Therefore,

π∗
h�l

L(φ)(V, W)

= �l
L(πh(φ))(Tφπh · V, Tφπh · W)

= �l
L(φ(h1) · · · φ(h4)) · ((V (h1) · · · V (h4)), (W(h1) · · · W(h4)))

=
4∑

k=1

∂2L

∂yk∂yl

(φ(h1), φ(h2), φ(h3), φ(h4)){V (hk)W(hl ) − V (hl )W(hk)}.

(4.11)

Substitution of (4.11) into the exterior derivative of the right-hand side of (4.9) yields

dα1(φ)(V, W) =
∑

(i,j)∈int U
 ∑

h⊆U ;l;(i,j)=hl

4∑
k=1

∂2L

∂yk∂yl

(φ(h1) · · · φ(h4))(V (hk)W(hl ) − V (hl )W(hk))


 ,

dα2(φ)(V, W) =
∑

(i,j)∈∂U
 ∑

h⊆U ;l;(i,j)=hl

4∑
k=1

∂2L

∂yk∂yl

(φ(h1) · · · φ(h4))(V (hk)W(hl ) − V (hl )W(hk))


 .

When specialized to two first-variation solutionsV andW at φ, dα1(φ)(V, W) vanishes,
because for each interior point(i, j) all four rectangles touching it are contained inU , and
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V (hl ) = V (i, j) andW(hl ) = W(i, j). Therefore, dα1 = 0 and the equation d2S = 0
becomes dα2 = 0, which in turn is equivalent to

∑
(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

[(j2φ)∗(j2w |j2v |�l
L)](h1)


 = 0 (4.12)

for all vector fieldsv, w on Y . This is the discrete analog of the multisymplectic form
formula for the continuous space–time.

We observe that dL = 21
L + 22

L + 23
L + 24

L, which shows that

�1
L + �2

L + �3
L + �4

L = 0,

which in turn implies that only three of the 2-forms�l
L, l = 1, 2, 3, 4, are in fact inde-

pendent. In addition, this implies that for agiven and fixedrectangleh,

0 =
4∑

l=1

π∗
h�l

L(φ)(V, W)

=
4∑

l=1

4∑
k=1

∂2L

∂yk∂yl

(φ(h1) · · · φ(h4))(V (hk)W(hl ) − V (hl )W(hk))

for all sectionsφ and all vectorsV, W .

4.6. Discrete Noether’s theorem

We would like to derive the discrete version of the Noether’s theorem for second-order
field theories. This is not the most general form possible as we are working with a partic-
ular example. However, it is such as to facilitate the derivation of any other case without
significant effort.

Suppose that a Lie groupG with a Lie algebrag acts onY by vertical symmetries such
that the LagrangianL is invariant under the action. Vertical action simply means that the
base elements fromX are not altered under the action, hence the action restricts to each fiber
of Y . Let 8 : G × Y → Y denote the action ofG onY . For everyg ∈ G, let 8g : Y → Y

be given byyij 7→ 8(g, yij ). We also use the notationg · y = 8g(y) for the action. Then
there is an induced action ofG onB defined in a natural way:

g · (y1, y2, y3, y4) = (8(g, y1), 8(g, y2), 8(g, y3), 8(g, y4)).

Recall that the infinitesimal generator of an action (of a Lie groupG on a manifoldM)
corresponding to a Lie algebra elementξ ∈ g is the vector fieldξM on M obtained by
differentiating the action with respect tog at the identity in the directionξ . By the chain
rule,

ξM(z) = d

dt

∣∣∣∣
t=0

[exp(tξ) · z],

where exp is the Lie algebra exponential map.
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Using this formula, we immediately see that

ξB(y1, y2, y3, y4) = (ξY (y1), ξY (y2), ξY (y3), ξY (y4)).

The invariance of the Lagrangian under the action implies that

ξB |dL = 0 ∀ξ ∈ g,
which, for a givenh, is equivalent to

4∑
l=1

∂L

∂yl

(y1, y2, y3, y4)ξY (yl) = 0 (4.13)

for all ξ ∈ g and all (y1, y2, y3, y4) ∈ B. For eachl, let us denote byπ
hl : B → Y

the projection onto thelth component. Using this projection the four components of the
infinitesimal generatorξB are expressed as

ξB =
4∑

l=1

ξ l
B =

4∑
l=1

(ξY ◦ π
hl )

∂

∂yl

.

Hence, Eq. (4.13) becomes

4∑
l=1

ξ l
B |2l

L = 0 ∀ξ ∈ g. (4.14)

We observe that for eachl,

ξ l
B |2l

L = ∂L

∂yl

· (ξY ◦ π
hl )

is a function onB which we denote byJ l(ξ). Notice thatJ l(ξ) = ξ l
B |2l

L is the discrete
multisymplectic analog ofξM |ωL = dJ (ξ) in classical mechanics so thatξM is the global
Hamiltonian vector field ofJ (ξ). Many symmetry groups act by special canonical transfor-
mations, i.e., £ξM

θL = 0, in which caseJ (ξ) = ξM |θL. In a such case,J (ξ) is uniquely
defined.

SinceξB is linear inξ , so are the functionsJ l(ξ), and we can replace the Lie group action
by a Lie algebra actionξ 7→ ξB. Finally, we are ready to define the momentum maps.

Definition 4.4. There are fourg∗-valuedmomentum mappingsJl , l = 1, 2, 3, 4 on B
defined by

〈Jl (y1, y2, y3, y4), ξ〉 = J l(ξ)(y1, y2, y3, y4) (4.15)

for all ξ ∈ g and(y1, y2, y3, y4) ∈ B, where〈·, ·〉 is the duality pairing.

Eq. (4.14) implies that

J
1 + J2 + J3 + J4 = 0,
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so, as in the case of the Lagrangian 2-forms, only three of the four momenta are essentially
distinct.

The discrete version of the Noether theorem for second-order field theories now follows.
Define the action of the Lie groupG onCU by

g · φ ≡ 8g ◦ φ, i.e. (g · φ)(i, j) = 8(g, φ(i, j)),

since the Lagrangian isG-invariant, so

S(g · φ) =
∑

h⊆U

L ◦ j2(g · φ)(h1) =
∑

h⊆U

L(g · φ(h1) · · · g · φ(h4))

=
∑

h⊆U

L(φ(h1) · · · φ(h4)) = S(φ).

Once again lettingg = exp(tξ) and differentiating with respect tot at t = 0, we obtain
that (ξCU

|dS)(φ) = 0 ∀φ ∈ CU . One can readily verify thatξCU
(φ) = ξY ◦ φ, which is

an element ofTφCU . Thus,

dS(φ) · (ξY ◦ φ) = 0 (4.16)

for all ξ ∈ g andφ ∈ CU . SinceS is G-invariant, thenG sends critical points ofS to them-
selves, or in other words, the action restricts to the space of solutions of the Euler–Lagrange
equations. Therefore, ifφ is a solution, so isφt ≡ exp(tξ) · φ, whereφ0 = φ and
(d/dt)|t=0 φt = ξY ◦ φ. Substitutingφt into the discrete Euler–Lagrange equations and
differentiating with respect tot at t = 0, we obtain that for anyξ andφ, ξY ◦ φ is a
first-variation equation solution. Using (4.8), (4.16) becomes

0 = dS(φ) · (ξY ◦ φ) =
∑

(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

∂L

∂yl

(φ(h1) · · · φ(h4))ξY ◦ φ(hl )




=
∑

(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

(ξY |2l
L)(φ(h1) · · · φ(h4))




=
∑

(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

J
l (φ(h1) · · · φ(h4))(ξ)




for all φ from the solution space and allξ . Thus, the discrete version of the Noether’s
theorem is

∑
(i,j)∈∂U


 ∑

h⊆U ;l;(i,j)=hl

[(j2φ)∗Jl ](h1)


 = 0 (4.7)

for all φ from the solution space.
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